I am trying to predict the Bitcoin price at t+5, i.e. 5 minutes ahead, using 11 technical indicators up to time t which can all be calculated from the open, high, low, close and volume values from the Bitcoin time series (see my full data set here). As far as I know, it is not necessary to manipulate the data frame when using algorithms like regression trees, support vector machines or artificial neural networks, but when using ensemble methods like random forests (RF) and Boosting, I heard that it is necessary to re-arrange the data frame in some way, because ensemble methods draw repeated RANDOM samples from the training data, in which case the sequence of the Bitcoin time series will be ruined. So, is there a way to re-arrange the data frame in some way such that the time series will still be in chronological order every time repeated samples are drawn from the training data?
I was provided with an explanation of how to construct the data frame here and possibly here, too, but unfortunately, I didn't really understand these explanations, because I didn't see a visual example of the to-be-constructed data frame and because I wasn't able to identify the relevant line of code. So, if someone could, show me how to re-arrange the data frame using an example data frame, I would be very thankful. As example data frame, you might consider using the airquality
in-built data frame in r (I think it contains time series data), the data I provided above, or any other data frame you think is best.
Many thanks!
There is no problem with resampling for ML algorithms. To capture (auto)correlation just add columns with lagged values of time series. E.g. in case of univarate time-series x[t], where t is time in minutes, you add x[t - 1], x[t - 2], ..., x[t - n] columns with lagged values. More lags you add more history will be accounted at model training.
Some very basic working example you can find here: Prediction using neural networks
More advanced staff with Keras is here: Time series prediction using RNN
However, just for your information, special message by Mr Chollet and Mr Allaire from the above-mentioned article ,):