For a performance measuring purpose I am trying to draw ROC curve. In ROC curve I have to plot False Positive Rate (FPR) in x-axis and True Positive Rate (TPR) in y-axis. As we know,
FPR = FP/(FP+TN)
So in the following picture how can i detect True Negative(TN) ? I have used HOG classifier to detect human. I marked with rectangle 1,2,3,4,5,6(or should be 7) to show the human objects that should be ignored and not to classify as human. and I think those are True Negative.
In this picture i want to say my assumption,as we know,
False negative: Result should have been positive, but is negative.
False positive: Result should have been negative, but is positive.
True positive: Result should have been positive and is positive.
True negative: Result should have been negative and is negative
So i think in this frame FP = 0, TP = 0, FN = 0 but not sure about TN, is it 6 or 7 or anything other? Please correct me also about FP, TP, and FN if i am wrong. I saw this question How to categorize True Negatives in sliding window object detection? which was really helpful but still i have to calculate FPR for this scenario.
You cannot calculate these values from such image, you need more data (knowledge what is actually happening). But what you need is probably just total amount of these windows, which is some constant N. Now, it seems like all these windows are wrong (none is on the human), thus:
In general