What is the best way to implement nested dictionar

2019-09-19 06:17发布

I have a data structure which essentially amounts to a nested dictionary. Let's say it looks like this:

{'new jersey': {'mercer county': {'plumbers': 3,
                                  'programmers': 81},
                'middlesex county': {'programmers': 81,
                                     'salesmen': 62}},
 'new york': {'queens county': {'plumbers': 9,
                                'salesmen': 36}}}

Now, maintaining and creating this is pretty painful; every time I have a new state/county/profession I have to create the lower layer dictionaries via obnoxious try/catch blocks. Moreover, I have to create annoying nested iterators if I want to go over all the values.

I could also use tuples as keys, like such:

{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new jersey', 'mercer county', 'programmers'): 81,
 ('new jersey', 'middlesex county', 'programmers'): 81,
 ('new jersey', 'middlesex county', 'salesmen'): 62,
 ('new york', 'queens county', 'plumbers'): 9,
 ('new york', 'queens county', 'salesmen'): 36}

This makes iterating over the values very simple and natural, but it is more syntactically painful to do things like aggregations and looking at subsets of the dictionary (e.g. if I just want to go state-by-state).

Basically, sometimes I want to think of a nested dictionary as a flat dictionary, and sometimes I want to think of it indeed as a complex hierarchy. I could wrap this all in a class, but it seems like someone might have done this already. Alternatively, it seems like there might be some really elegant syntactical constructions to do this.

How could I do this better?

Addendum: I'm aware of setdefault() but it doesn't really make for clean syntax. Also, each sub-dictionary you create still needs to have setdefault() manually set.

20条回答
Anthone
2楼-- · 2019-09-19 06:28
class AutoVivification(dict):
    """Implementation of perl's autovivification feature."""
    def __getitem__(self, item):
        try:
            return dict.__getitem__(self, item)
        except KeyError:
            value = self[item] = type(self)()
            return value

Testing:

a = AutoVivification()

a[1][2][3] = 4
a[1][3][3] = 5
a[1][2]['test'] = 6

print a

Output:

{1: {2: {'test': 6, 3: 4}, 3: {3: 5}}}
查看更多
贪生不怕死
3楼-- · 2019-09-19 06:28

You could create a YAML file and read it in using PyYaml.

Step 1: Create a YAML file, "employment.yml":

new jersey:
  mercer county:
    pumbers: 3
    programmers: 81
  middlesex county:
    salesmen: 62
    programmers: 81
new york:
  queens county:
    plumbers: 9
    salesmen: 36

Step 2: Read it in Python

import yaml
file_handle = open("employment.yml")
my_shnazzy_dictionary = yaml.safe_load(file_handle)
file_handle.close()

and now my_shnazzy_dictionary has all your values. If you needed to do this on the fly, you can create the YAML as a string and feed that into yaml.safe_load(...).

查看更多
爷、活的狠高调
4楼-- · 2019-09-19 06:28

Unless your dataset is going to stay pretty small, you might want to consider using a relational database. It will do exactly what you want: make it easy to add counts, selecting subsets of counts, and even aggregate counts by state, county, occupation, or any combination of these.

查看更多
Lonely孤独者°
5楼-- · 2019-09-19 06:29

What is the best way to implement nested dictionaries in Python?

Implement __missing__ on a dict subclass to set and return a new instance.

This approach has been available (and documented) since Python 2.5, and (particularly valuable to me) it pretty prints just like a normal dict, instead of the ugly printing of an autovivified defaultdict:

class Vividict(dict):
    def __missing__(self, key):
        value = self[key] = type(self)() # retain local pointer to value
        return value                     # faster to return than dict lookup

(Note self[key] is on the left-hand side of assignment, so there's no recursion here.)

and say you have some data:

data = {('new jersey', 'mercer county', 'plumbers'): 3,
        ('new jersey', 'mercer county', 'programmers'): 81,
        ('new jersey', 'middlesex county', 'programmers'): 81,
        ('new jersey', 'middlesex county', 'salesmen'): 62,
        ('new york', 'queens county', 'plumbers'): 9,
        ('new york', 'queens county', 'salesmen'): 36}

Here's our usage code:

vividict = Vividict()
for (state, county, occupation), number in data.items():
    vividict[state][county][occupation] = number

And now:

>>> import pprint
>>> pprint.pprint(vividict, width=40)
{'new jersey': {'mercer county': {'plumbers': 3,
                                  'programmers': 81},
                'middlesex county': {'programmers': 81,
                                     'salesmen': 62}},
 'new york': {'queens county': {'plumbers': 9,
                                'salesmen': 36}}}

Criticism

A criticism of this type of container is that if the user misspells a key, our code could fail silently:

>>> vividict['new york']['queens counyt']
{}

And additionally now we'd have a misspelled county in our data:

>>> pprint.pprint(vividict, width=40)
{'new jersey': {'mercer county': {'plumbers': 3,
                                  'programmers': 81},
                'middlesex county': {'programmers': 81,
                                     'salesmen': 62}},
 'new york': {'queens county': {'plumbers': 9,
                                'salesmen': 36},
              'queens counyt': {}}}

Explanation:

We're just providing another nested instance of our class Vividict whenever a key is accessed but missing. (Returning the value assignment is useful because it avoids us additionally calling the getter on the dict, and unfortunately, we can't return it as it is being set.)

Note, these are the same semantics as the most upvoted answer but in half the lines of code - nosklo's implementation:

class AutoVivification(dict):
    """Implementation of perl's autovivification feature."""
    def __getitem__(self, item):
        try:
            return dict.__getitem__(self, item)
        except KeyError:
            value = self[item] = type(self)()
            return value

Demonstration of Usage

Below is just an example of how this dict could be easily used to create a nested dict structure on the fly. This can quickly create a hierarchical tree structure as deeply as you might want to go.

import pprint

class Vividict(dict):
    def __missing__(self, key):
        value = self[key] = type(self)()
        return value

d = Vividict()

d['foo']['bar']
d['foo']['baz']
d['fizz']['buzz']
d['primary']['secondary']['tertiary']['quaternary']
pprint.pprint(d)

Which outputs:

{'fizz': {'buzz': {}},
 'foo': {'bar': {}, 'baz': {}},
 'primary': {'secondary': {'tertiary': {'quaternary': {}}}}}

And as the last line shows, it pretty prints beautifully and in order for manual inspection. But if you want to visually inspect your data, implementing __missing__ to set a new instance of its class to the key and return it is a far better solution.

Other alternatives, for contrast:

dict.setdefault

Although the asker thinks this isn't clean, I find it preferable to the Vividict myself.

d = {} # or dict()
for (state, county, occupation), number in data.items():
    d.setdefault(state, {}).setdefault(county, {})[occupation] = number

and now:

>>> pprint.pprint(d, width=40)
{'new jersey': {'mercer county': {'plumbers': 3,
                                  'programmers': 81},
                'middlesex county': {'programmers': 81,
                                     'salesmen': 62}},
 'new york': {'queens county': {'plumbers': 9,
                                'salesmen': 36}}}

A misspelling would fail noisily, and not clutter our data with bad information:

>>> d['new york']['queens counyt']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'queens counyt'

Additionally, I think setdefault works great when used in loops and you don't know what you're going to get for keys, but repetitive usage becomes quite burdensome, and I don't think anyone would want to keep up the following:

d = dict()

d.setdefault('foo', {}).setdefault('bar', {})
d.setdefault('foo', {}).setdefault('baz', {})
d.setdefault('fizz', {}).setdefault('buzz', {})
d.setdefault('primary', {}).setdefault('secondary', {}).setdefault('tertiary', {}).setdefault('quaternary', {})

Another criticism is that setdefault requires a new instance whether it is used or not. However, Python (or at least CPython) is rather smart about handling unused and unreferenced new instances, for example, it reuses the location in memory:

>>> id({}), id({}), id({})
(523575344, 523575344, 523575344)

An auto-vivified defaultdict

This is a neat looking implementation, and usage in a script that you're not inspecting the data on would be as useful as implementing __missing__:

from collections import defaultdict

def vivdict():
    return defaultdict(vivdict)

But if you need to inspect your data, the results of an auto-vivified defaultdict populated with data in the same way looks like this:

>>> d = vivdict(); d['foo']['bar']; d['foo']['baz']; d['fizz']['buzz']; d['primary']['secondary']['tertiary']['quaternary']; import pprint; 
>>> pprint.pprint(d)
defaultdict(<function vivdict at 0x17B01870>, {'foo': defaultdict(<function vivdict 
at 0x17B01870>, {'baz': defaultdict(<function vivdict at 0x17B01870>, {}), 'bar': 
defaultdict(<function vivdict at 0x17B01870>, {})}), 'primary': defaultdict(<function 
vivdict at 0x17B01870>, {'secondary': defaultdict(<function vivdict at 0x17B01870>, 
{'tertiary': defaultdict(<function vivdict at 0x17B01870>, {'quaternary': defaultdict(
<function vivdict at 0x17B01870>, {})})})}), 'fizz': defaultdict(<function vivdict at 
0x17B01870>, {'buzz': defaultdict(<function vivdict at 0x17B01870>, {})})})

This output is quite inelegant, and the results are quite unreadable. The solution typically given is to recursively convert back to a dict for manual inspection. This non-trivial solution is left as an exercise for the reader.

Performance

Finally, let's look at performance. I'm subtracting the costs of instantiation.

>>> import timeit
>>> min(timeit.repeat(lambda: {}.setdefault('foo', {}))) - min(timeit.repeat(lambda: {}))
0.13612580299377441
>>> min(timeit.repeat(lambda: vivdict()['foo'])) - min(timeit.repeat(lambda: vivdict()))
0.2936999797821045
>>> min(timeit.repeat(lambda: Vividict()['foo'])) - min(timeit.repeat(lambda: Vividict()))
0.5354437828063965
>>> min(timeit.repeat(lambda: AutoVivification()['foo'])) - min(timeit.repeat(lambda: AutoVivification()))
2.138362169265747

Based on performance, dict.setdefault works the best. I'd highly recommend it for production code, in cases where you care about execution speed.

If you need this for interactive use (in an IPython notebook, perhaps) then performance doesn't really matter - in which case, I'd go with Vividict for readability of the output. Compared to the AutoVivification object (which uses __getitem__ instead of __missing__, which was made for this purpose) it is far superior.

Conclusion

Implementing __missing__ on a subclassed dict to set and return a new instance is slightly more difficult than alternatives but has the benefits of

  • easy instantiation
  • easy data population
  • easy data viewing

and because it is less complicated and more performant than modifying __getitem__, it should be preferred to that method.

Nevertheless, it has drawbacks:

  • Bad lookups will fail silently.
  • The bad lookup will remain in the dictionary.

Thus I personally prefer setdefault to the other solutions, and have in every situation where I have needed this sort of behavior.

查看更多
该账号已被封号
6楼-- · 2019-09-19 06:30

defaultdict() is your friend!

For a two dimensional dictionary you can do:

d = defaultdict(defaultdict)
d[1][2] = 3

For more dimensions you can:

d = defaultdict(lambda :defaultdict(defaultdict))
d[1][2][3] = 4
查看更多
再贱就再见
7楼-- · 2019-09-19 06:30
class JobDb(object):
    def __init__(self):
        self.data = []
        self.all = set()
        self.free = []
        self.index1 = {}
        self.index2 = {}
        self.index3 = {}

    def _indices(self,(key1,key2,key3)):
        indices = self.all.copy()
        wild = False
        for index,key in ((self.index1,key1),(self.index2,key2),
                                             (self.index3,key3)):
            if key is not None:
                indices &= index.setdefault(key,set())
            else:
                wild = True
        return indices, wild

    def __getitem__(self,key):
        indices, wild = self._indices(key)
        if wild:
            return dict(self.data[i] for i in indices)
        else:
            values = [self.data[i][-1] for i in indices]
            if values:
                return values[0]

    def __setitem__(self,key,value):
        indices, wild = self._indices(key)
        if indices:
            for i in indices:
                self.data[i] = key,value
        elif wild:
            raise KeyError(k)
        else:
            if self.free:
                index = self.free.pop(0)
                self.data[index] = key,value
            else:
                index = len(self.data)
                self.data.append((key,value))
                self.all.add(index)
            self.index1.setdefault(key[0],set()).add(index)
            self.index2.setdefault(key[1],set()).add(index)
            self.index3.setdefault(key[2],set()).add(index)

    def __delitem__(self,key):
        indices,wild = self._indices(key)
        if not indices:
            raise KeyError
        self.index1[key[0]] -= indices
        self.index2[key[1]] -= indices
        self.index3[key[2]] -= indices
        self.all -= indices
        for i in indices:
            self.data[i] = None
        self.free.extend(indices)

    def __len__(self):
        return len(self.all)

    def __iter__(self):
        for key,value in self.data:
            yield key

Example:

>>> db = JobDb()
>>> db['new jersey', 'mercer county', 'plumbers'] = 3
>>> db['new jersey', 'mercer county', 'programmers'] = 81
>>> db['new jersey', 'middlesex county', 'programmers'] = 81
>>> db['new jersey', 'middlesex county', 'salesmen'] = 62
>>> db['new york', 'queens county', 'plumbers'] = 9
>>> db['new york', 'queens county', 'salesmen'] = 36

>>> db['new york', None, None]
{('new york', 'queens county', 'plumbers'): 9,
 ('new york', 'queens county', 'salesmen'): 36}

>>> db[None, None, 'plumbers']
{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new york', 'queens county', 'plumbers'): 9}

>>> db['new jersey', 'mercer county', None]
{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new jersey', 'mercer county', 'programmers'): 81}

>>> db['new jersey', 'middlesex county', 'programmers']
81

>>>

Edit: Now returning dictionaries when querying with wild cards (None), and single values otherwise.

查看更多
登录 后发表回答