when I run train_caffenet.sh
, I get the following errors:
I0906 10:56:42.327703 21556 solver.cpp:91] Creating training net from net file: /home/pris/caffe-master/examples/myself/train_val.prototxt
[libprotobuf ERROR google/protobuf/text_format.cc:245] Error parsing text-format caffe.NetParameter: 26:12: Message type "caffe.ImageDataParameter" has no field named "backend".
F0906 10:56:42.327837 21556 upgrade_proto.cpp:79] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: /home/pris/caffe-master/examples/myself/train_val.prototxt
*** Check failure stack trace: ***
@ 0x7f5013ca0daa (unknown)
@ 0x7f5013ca0ce4 (unknown)
@ 0x7f5013ca06e6 (unknown)
@ 0x7f5013ca3687 (unknown)
@ 0x7f50142b019e caffe::ReadNetParamsFromTextFileOrDie()
@ 0x7f501429e76b caffe::Solver<>::InitTrainNet()
@ 0x7f501429f83c caffe::Solver<>::Init()
@ 0x7f501429fb6a caffe::Solver<>::Solver()
@ 0x7f50143de663 caffe::Creator_SGDSolver<>()
@ 0x40e9be caffe::SolverRegistry<>::CreateSolver()
@ 0x407b62 train()
@ 0x4059ec main
@ 0x7f5012faef45 (unknown)
@ 0x406121 (unknown)
@ (nil) (unknown)
Aborted (core dumped)
I've tried to solve it for a few days but still can't figure out how it comes wrong.
here is my train_val.prototxt
, mainly modified from the one in $CAFFE_TOOT/models/bvlc_reference_caffenet
name: "CaffeNet"
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "/home/pris/caffe-master/data/myself/myimagenet_mean.binaryproto"
}
# mean pixel / channel-wise mean instead of mean image
# transform_param {
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# mirror: true
# }
image_data_param {
source: "/home/pris/caffe-master/examples/myself/imagenet_train_leveldb"
batch_size: 256
backend: LEVELDB
}
}
layer
{
name: "data"
type: "ImageData"
top: "data"
top: "label"
include { phase: TEST }
transform_param
{
mirror: false
crop_size: 227
mean_file: "/home/pris/caffe-master/data/myself/myimagenet_mean.binaryproto"
}
# mean pixel / channel-wise mean instead of mean image
# transform_param {
# crop_size: 227
# mean_value: 104
# mean_value: 117
# mean_value: 123
# mirror: false
# }
image_data_param
{
source: "/home/pris/caffe-master/examples/myself/imagenet_val_leveldb"
batch_size: 50
backend: LEVELDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
convolution_param
{
num_output: 96
kernel_size: 11
stride: 4
weight_filler
{
type: "gaussian"
std: 0.01
}
bias_filler
{
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
convolution_param
{
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler
{
type: "gaussian"
std: 0.01
}
bias_filler
{
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
convolution_param
{
num_output: 384
pad: 1
kernel_size: 3
weight_filler
{
type: "gaussian"
std: 0.01
}
bias_filler
{
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
convolution_param
{
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler
{
type: "gaussian"
std: 0.01
}
bias_filler
{
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param
{
lr_mult: 1
decay_mult: 1
}
param
{
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
and the sovler.prototxt
net: "/home/pris/caffe-master/examples/myself/train_val.prototxt"
test_iter: 10
test_interval: 500
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 2000
snapshot_prefix:"/home/pris/caffe-master/examples/myself/result"
solver_mode: GPU
train_caffenet.sh
:
#!/usr/bin/env sh
/home/pris/caffe-master/build/tools/caffe train \
--solver=/home/pris/caffe-master/examples/myself/solver.prototxt
I will really appreciate if someone could help me fixed it.
You are reading training data from leveldb database, you should use input layer of type
"Data"
and not"ImageData"
.