I have two threads that start up a child process each. The first application is a binary that runs quite long. The second exits quite quickly.
There is a race condition that sometimes causes this to fail. Below I have a minimum viable code example.
It uses Boost Process 0.5, which uses the standard fork / execve / dup2 system. There are some hacks regarding how Boost Process works, but in general it works quite well.
The parent process starts up a lot more processes, and in general it works.
I can't readily boot processes one at a time, especially since I don't know which parts can't interleave.
Any ideas on why this would hang?
Expected output:
/etc/init.d/led restart: Creating child
Creating child1
Reading STDOUT
/etc/init.d/led restart: Waiting for it to exit
Reading std_err_pipe
wait_for_exit(pullapp);
Reading std_out_pipe
< file list>
Done
However, often, but not always, it stops at std_err_pipe.
#include <iostream>
#include <string>
#include <vector>
#include <boost/iostreams/stream.hpp>
#include <boost/process.hpp>
#include <boost/thread.hpp>
void run_sleep()
{
int exit_code;
std::string str;
std::vector< std::string > args;
boost::shared_ptr<boost::process::child> child;
args.push_back(boost::process::search_path("sleep"));
args.push_back("20");
boost::iostreams::stream< boost::iostreams::file_descriptor_source >
out_stream;
boost::process::pipe out_pipe = boost::process::create_pipe();
{
//MUST BE IN SEPARATE SCOPE SO SINK AND SOURCE ARE DESTROYED
// See http://stackoverflow.com/a/12469478/5151127
boost::iostreams::file_descriptor_sink out_sink
(out_pipe.sink, boost::iostreams::close_handle);
boost::iostreams::file_descriptor_source out_source
(out_pipe.source, boost::iostreams::close_handle);
std::cout << "Creating child1" << std::endl;
child.reset(new boost::process::child(
boost::process::execute(
boost::process::initializers::run_exe(args[0]),
boost::process::initializers::set_args(args),
boost::process::initializers::bind_stdout(out_sink),
boost::process::initializers::bind_stderr(out_sink)
)
));
out_stream.open(out_source);
}
std::cout << "Reading STDOUT" << std::endl;
while( out_stream ) {
std::string line;
std::getline(out_stream, line);
std::cout << line << std::endl;
}
std::cout << "wait_for_exit(pullapp);" << std::endl;
exit_code = wait_for_exit(*child);
child.reset();
return;
}
void run_ls()
{
int exit_code;
std::string str;
std::vector< std::string > args ;
args.push_back(boost::process::search_path("ls"));
args.push_back("/lib");
boost::process::pipe std_out_pipe = boost::process::create_pipe();
boost::process::pipe std_err_pipe = boost::process::create_pipe();
std::cout << "/etc/init.d/led restart: Creating child" << std::endl;
{
boost::process::child child = boost::process::execute(
boost::process::initializers::set_args(args),
boost::process::initializers::bind_stdout(
boost::iostreams::file_descriptor_sink(
std_out_pipe.sink,
boost::iostreams::close_handle
)
),
boost::process::initializers::bind_stderr(
boost::iostreams::file_descriptor_sink(
std_err_pipe.sink,
boost::iostreams::close_handle
)
),
boost::process::initializers::throw_on_error()
);
std::cout << "/etc/init.d/led restart: Waiting for it to exit" << std::endl;
exit_code = wait_for_exit(child);
}
{ //with std_err_stream, istream
boost::iostreams::stream< boost::iostreams::file_descriptor_source >
std_err_stream(
boost::iostreams::file_descriptor_source(
std_err_pipe.source, boost::iostreams::close_handle
)
);
std::cout << "Reading std_err_pipe" << std::endl;
std::istream istream(std_err_stream.rdbuf());
while( istream ) {
getline(istream, str);
std::cout << str << std::endl;
}
}
{ //with std_out_stream, istream
boost::iostreams::stream< boost::iostreams::file_descriptor_source >
std_out_stream(
boost::iostreams::file_descriptor_source(
std_out_pipe.source, boost::iostreams::close_handle
)
);
std::cout << "Reading std_out_pipe" << std::endl;
std::istream istream(std_out_stream.rdbuf());
while( istream ) {
getline(istream, str);
std::cout << str << std::endl;
}
}
std::cout << "Done" << std::endl;
}
int main()
{
boost::thread run_sleep_tr(run_sleep);
boost::thread run_ls_tr(run_ls);
run_sleep_tr.join();
run_ls_tr.join();
return 0;
}
(Save as process-test.cpp and compile with g++ process-test.cpp -o process-test -lboost_iostreams -lboost_filesystem -lboost_thread -lboost_system
)
I'm not sure if "use boost.process 0.6" counts as an answer, but that does that for you. After a few bug-reports that is. On windows closing the sink in the father process should suffice.
Apparently this is because file handles end up in multiple processes. Those processes don't close those handles, so the parent remains waiting.
For Linux the fix is relatively easy; the pipe should be created with
O_CLOEXEC
increate_pipe
. Thedup2
call in thebind_*
methods clears this flag, which is enough for the pipe to work properly.On Windows, I haven't really found a solution yet. You have to mark the handle as inheritable. It may be possible to do this in the
executor()
method, but maybe this requires a global mutex. I haven't had the time to properly look into it yet.