Algorithm for Determining Tic Tac Toe Game Over

2019-01-01 05:00发布

I've written a game of tic-tac-toe in Java, and my current method of determining the end of the game accounts for the following possible scenarios for the game being over:

  1. The board is full, and no winner has yet been declared: Game is a draw.
  2. Cross has won.
  3. Circle has won.

Unfortunately, to do so, it reads through a predefined set of these scenarios from a table. This isn't necessarily bad considering that there are only 9 spaces on a board, and thus the table is somewhat small, but is there a better algorithmic way of determining if the game is over? The determination of whether someone has won or not is the meat of the problem, since checking if 9 spaces are full is trivial.

The table method might be the solution, but if not, what is? Also, what if the board were not size n=9? What if it were a much larger board, say n=16, n=25, and so on, causing the number of consecutively placed items to win to be x=4, x=5, etc? A general algorithm to use for all n = { 9, 16, 25, 36 ... }?

21条回答
梦醉为红颜
2楼-- · 2019-01-01 05:19

Another option: generate your table with code. Up to symmetry, there are only three ways to win: edge row, middle row, or diagonal. Take those three and spin them around every way possible:

def spin(g): return set([g, turn(g), turn(turn(g)), turn(turn(turn(g)))])
def turn(g): return tuple(tuple(g[y][x] for y in (0,1,2)) for x in (2,1,0))

X,s = 'X.'
XXX = X, X, X
sss = s, s, s

ways_to_win = (  spin((XXX, sss, sss))
               | spin((sss, XXX, sss))
               | spin(((X,s,s),
                       (s,X,s),
                       (s,s,X))))

These symmetries can have more uses in your game-playing code: if you get to a board you've already seen a rotated version of, you can just take the cached value or cached best move from that one (and unrotate it back). This is usually much faster than evaluating the game subtree.

(Flipping left and right can help the same way; it wasn't needed here because the set of rotations of the winning patterns is mirror-symmetric.)

查看更多
不流泪的眼
3楼-- · 2019-01-01 05:24

This is similar to Osama ALASSIRY's answer, but it trades constant-space and linear-time for linear-space and constant-time. That is, there's no looping after initialization.

Initialize a pair (0,0) for each row, each column, and the two diagonals (diagonal & anti-diagonal). These pairs represent the accumulated (sum,sum) of the pieces in the corresponding row, column, or diagonal, where

A piece from player A has value (1,0)
A piece from player B has value (0,1)

When a player places a piece, update the corresponding row pair, column pair, and diagonal pairs (if on the diagonals). If any newly updated row, column, or diagonal pair equals either (n,0) or (0,n) then either A or B won, respectively.

Asymptotic analysis:

O(1) time (per move)
O(n) space (overall)

For the memory use, you use 4*(n+1) integers.

two_elements*n_rows + two_elements*n_columns +
two_elements*two_diagonals = 4*n + 4 integers = 4(n+1) integers

Exercise: Can you see how to test for a draw in O(1) time per-move? If so, you can end the game early on a draw.

查看更多
美炸的是我
4楼-- · 2019-01-01 05:24

I just wrote this for my C programming class.

I am posting it because none of the other examples here will work with any size rectangular grid, and any number N-in-a-row consecutive marks to win.

You'll find my algorithm, such as it is, in the checkWinner() function. It doesn't use magic numbers or anything fancy to check for a winner, it simply uses four for loops - The code is well commented so I'll let it speak for itself I guess.

// This program will work with any whole number sized rectangular gameBoard.
// It checks for N marks in straight lines (rows, columns, and diagonals).
// It is prettiest when ROWS and COLS are single digit numbers.
// Try altering the constants for ROWS, COLS, and N for great fun!    

// PPDs come first

    #include <stdio.h>
    #define ROWS 9              // The number of rows our gameBoard array will have
    #define COLS 9              // The number of columns of the same - Single digit numbers will be prettier!
    #define N 3                 // This is the number of contiguous marks a player must have to win
    #define INITCHAR ' '        // This changes the character displayed (a ' ' here probably looks the best)
    #define PLAYER1CHAR 'X'     // Some marks are more aesthetically pleasing than others
    #define PLAYER2CHAR 'O'     // Change these lines if you care to experiment with them


// Function prototypes are next

    int playGame    (char gameBoard[ROWS][COLS]);               // This function allows the game to be replayed easily, as desired
    void initBoard  (char gameBoard[ROWS][COLS]);               // Fills the ROWSxCOLS character array with the INITCHAR character
    void printBoard (char gameBoard[ROWS][COLS]);               // Prints out the current board, now with pretty formatting and #s!
    void makeMove   (char gameBoard[ROWS][COLS], int player);   // Prompts for (and validates!) a move and stores it into the array
    int checkWinner (char gameBoard[ROWS][COLS], int player);   // Checks the current state of the board to see if anyone has won

// The starting line
int main (void)
{
    // Inits
    char gameBoard[ROWS][COLS];     // Our gameBoard is declared as a character array, ROWS x COLS in size
    int winner = 0;
    char replay;

    //Code
    do                              // This loop plays through the game until the user elects not to
    {
        winner = playGame(gameBoard);
        printf("\nWould you like to play again? Y for yes, anything else exits: ");

        scanf("%c",&replay);        // I have to use both a scanf() and a getchar() in
        replay = getchar();         // order to clear the input buffer of a newline char
                                    // (http://cboard.cprogramming.com/c-programming/121190-problem-do-while-loop-char.html)

    } while ( replay == 'y' || replay == 'Y' );

    // Housekeeping
    printf("\n");
    return winner;
}


int playGame(char gameBoard[ROWS][COLS])
{
    int turn = 0, player = 0, winner = 0, i = 0;

    initBoard(gameBoard);

    do
    {
        turn++;                                 // Every time this loop executes, a unique turn is about to be made
        player = (turn+1)%2+1;                  // This mod function alternates the player variable between 1 & 2 each turn
        makeMove(gameBoard,player);
        printBoard(gameBoard);
        winner = checkWinner(gameBoard,player);

        if (winner != 0)
        {
            printBoard(gameBoard);

            for (i=0;i<19-2*ROWS;i++)           // Formatting - works with the default shell height on my machine
                printf("\n");                   // Hopefully I can replace these with something that clears the screen for me

            printf("\n\nCongratulations Player %i, you've won with %i in a row!\n\n",winner,N);
            return winner;
        }

    } while ( turn < ROWS*COLS );                           // Once ROWS*COLS turns have elapsed

    printf("\n\nGame Over!\n\nThere was no Winner :-(\n");  // The board is full and the game is over
    return winner;
}


void initBoard (char gameBoard[ROWS][COLS])
{
    int row = 0, col = 0;

    for (row=0;row<ROWS;row++)
    {
        for (col=0;col<COLS;col++)
        {
            gameBoard[row][col] = INITCHAR;     // Fill the gameBoard with INITCHAR characters
        }
    }

    printBoard(gameBoard);                      // Having this here prints out the board before
    return;                             // the playGame function asks for the first move
}


void printBoard (char gameBoard[ROWS][COLS])    // There is a ton of formatting in here
{                                               // That I don't feel like commenting :P
    int row = 0, col = 0, i=0;                  // It took a while to fine tune
                                                // But now the output is something like:
    printf("\n");                               // 
                                                //    1   2   3
    for (row=0;row<ROWS;row++)                  // 1    |   |
    {                                           //   -----------
        if (row == 0)                           // 2    |   |
        {                                       //   -----------
            printf("  ");                       // 3    |   |

            for (i=0;i<COLS;i++)
            {
                printf(" %i  ",i+1);
            }

            printf("\n\n");
        }

        for (col=0;col<COLS;col++)
        {
            if (col==0)
                printf("%i ",row+1);

            printf(" %c ",gameBoard[row][col]);

            if (col<COLS-1)
                printf("|");
        }

        printf("\n");

        if (row < ROWS-1)
        {
            for(i=0;i<COLS-1;i++)
            {
                if(i==0)
                    printf("  ----");
                else
                    printf("----");
            }

            printf("---\n");
        }
    }

    return;
}


void makeMove (char gameBoard[ROWS][COLS],int player)
{
    int row = 0, col = 0, i=0;
    char currentChar;

    if (player == 1)                    // This gets the correct player's mark
        currentChar = PLAYER1CHAR;
    else
        currentChar = PLAYER2CHAR;

    for (i=0;i<21-2*ROWS;i++)           // Newline formatting again :-(
        printf("\n");

    printf("\nPlayer %i, please enter the column of your move: ",player);
    scanf("%i",&col);
    printf("Please enter the row of your move: ");
    scanf("%i",&row);

    row--;                              // These lines translate the user's rows and columns numbering
    col--;                              // (starting with 1) to the computer's (starting with 0)

    while(gameBoard[row][col] != INITCHAR || row > ROWS-1 || col > COLS-1)  // We are not using a do... while because
    {                                                                       // I wanted the prompt to change
        printBoard(gameBoard);
        for (i=0;i<20-2*ROWS;i++)
            printf("\n");
        printf("\nPlayer %i, please enter a valid move! Column first, then row.\n",player);
        scanf("%i %i",&col,&row);

        row--;                          // See above ^^^
        col--;
    }

    gameBoard[row][col] = currentChar;  // Finally, we store the correct mark into the given location
    return;                             // And pop back out of this function
}


int checkWinner(char gameBoard[ROWS][COLS], int player)     // I've commented the last (and the hardest, for me anyway)
{                                                           // check, which checks for backwards diagonal runs below >>>
    int row = 0, col = 0, i = 0;
    char currentChar;

    if (player == 1)
        currentChar = PLAYER1CHAR;
    else
        currentChar = PLAYER2CHAR;

    for ( row = 0; row < ROWS; row++)                       // This first for loop checks every row
    {
        for ( col = 0; col < (COLS-(N-1)); col++)           // And all columns until N away from the end
        {
            while (gameBoard[row][col] == currentChar)      // For consecutive rows of the current player's mark
            {
                col++;
                i++;
                if (i == N)
                {
                    return player;
                }
            }
            i = 0;
        }
    }

    for ( col = 0; col < COLS; col++)                       // This one checks for columns of consecutive marks
    {
        for ( row = 0; row < (ROWS-(N-1)); row++)
        {
            while (gameBoard[row][col] == currentChar)
            {
                row++;
                i++;
                if (i == N)
                {
                    return player;
                }
            }
            i = 0;
        }
    }

    for ( col = 0; col < (COLS - (N-1)); col++)             // This one checks for "forwards" diagonal runs
    {
        for ( row = 0; row < (ROWS-(N-1)); row++)
        {
            while (gameBoard[row][col] == currentChar)
            {
                row++;
                col++;
                i++;
                if (i == N)
                {
                    return player;
                }
            }
            i = 0;
        }
    }
                                                        // Finally, the backwards diagonals:
    for ( col = COLS-1; col > 0+(N-2); col--)           // Start from the last column and go until N columns from the first
    {                                                   // The math seems strange here but the numbers work out when you trace them
        for ( row = 0; row < (ROWS-(N-1)); row++)       // Start from the first row and go until N rows from the last
        {
            while (gameBoard[row][col] == currentChar)  // If the current player's character is there
            {
                row++;                                  // Go down a row
                col--;                                  // And back a column
                i++;                                    // The i variable tracks how many consecutive marks have been found
                if (i == N)                             // Once i == N
                {
                    return player;                      // Return the current player number to the
                }                                       // winnner variable in the playGame function
            }                                           // If it breaks out of the while loop, there weren't N consecutive marks
            i = 0;                                      // So make i = 0 again
        }                                               // And go back into the for loop, incrementing the row to check from
    }

    return 0;                                           // If we got to here, no winner has been detected,
}                                                       // so we pop back up into the playGame function

// The end!

// Well, almost.

// Eventually I hope to get this thing going
// with a dynamically sized array. I'll make
// the CONSTANTS into variables in an initGame
// function and allow the user to define them.
查看更多
一个人的天荒地老
5楼-- · 2019-01-01 05:24

I was asked the same question in one of my interviews. My thoughts: Initialize the matrix with 0. Keep 3 arrays 1)sum_row (size n) 2) sum_column (size n) 3) diagonal (size 2)

For each move by (X) decrement the box value by 1 and for each move by (0) increment it by 1. At any point if the row/column/diagonal which has been modified in current move has sum either -3 or +3 means somebody has won the game. For a draw we can use above approach to keep the moveCount variable.

Do you think I am missing something ?

Edit: Same can be used for nxn matrix. Sum should be even +3 or -3.

查看更多
荒废的爱情
6楼-- · 2019-01-01 05:24

Here is my solution using an 2-dimensional array:

private static final int dimension = 3;
private static final int[][] board = new int[dimension][dimension];
private static final int xwins = dimension * 1;
private static final int owins = dimension * -1;

public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    int count = 0;
    boolean keepPlaying = true;
    boolean xsTurn = true;
    while (keepPlaying) {
        xsTurn = (count % 2 == 0);
        System.out.print("Enter i-j in the format:");
        if (xsTurn) {
            System.out.println(" X plays: ");
        } else {
            System.out.println(" O plays: ");
        }
        String result = null;
        while (result == null) {
            result = parseInput(scanner, xsTurn);
        }
        String[] xy = result.split(",");
        int x = Integer.parseInt(xy[0]);
        int y = Integer.parseInt(xy[1]);
        keepPlaying = makeMove(xsTurn, x, y);
        count++;
    }
    if (xsTurn) {
        System.out.print("X");
    } else {
        System.out.print("O");
    }
    System.out.println(" WON");
    printArrayBoard(board);
}

private static String parseInput(Scanner scanner, boolean xsTurn) {
    String line = scanner.nextLine();
    String[] values = line.split("-");
    int x = Integer.parseInt(values[0]);
    int y = Integer.parseInt(values[1]);
    boolean alreadyPlayed = alreadyPlayed(x, y);
    String result = null;
    if (alreadyPlayed) {
        System.out.println("Already played in this x-y. Retry");
    } else {
        result = "" + x + "," + y;
    }
    return result;
}

private static boolean alreadyPlayed(int x, int y) {
    System.out.println("x-y: " + x + "-" + y + " board[x][y]: " + board[x][y]);
    if (board[x][y] != 0) {
        return true;
    }
    return false;
}

private static void printArrayBoard(int[][] board) {
    for (int i = 0; i < dimension; i++) {
        int[] height = board[i];
        for (int j = 0; j < dimension; j++) {
            System.out.print(height[j] + " ");
        }
        System.out.println();
    }
}

private static boolean makeMove(boolean xo, int x, int y) {
    if (xo) {
        board[x][y] = 1;
    } else {
        board[x][y] = -1;
    }
    boolean didWin = checkBoard();
    if (didWin) {
        System.out.println("keep playing");
    }
    return didWin;
}

private static boolean checkBoard() {
    //check horizontal
    int[] horizontalTotal = new int[dimension];
    for (int i = 0; i < dimension; i++) {
        int[] height = board[i];
        int total = 0;
        for (int j = 0; j < dimension; j++) {
            total += height[j];
        }
        horizontalTotal[i] = total;
    }
    for (int a = 0; a < horizontalTotal.length; a++) {
        if (horizontalTotal[a] == xwins || horizontalTotal[a] == owins) {
            System.out.println("horizontal");
            return false;
        }
    }
    //check vertical
    int[] verticalTotal = new int[dimension];

    for (int j = 0; j < dimension; j++) {
        int total = 0;
        for (int i = 0; i < dimension; i++) {
            total += board[i][j];
        }
        verticalTotal[j] = total;
    }
    for (int a = 0; a < verticalTotal.length; a++) {
        if (verticalTotal[a] == xwins || verticalTotal[a] == owins) {
            System.out.println("vertical");
            return false;
        }
    }
    //check diagonal
    int total1 = 0;
    int total2 = 0;
    for (int i = 0; i < dimension; i++) {
        for (int j = 0; j < dimension; j++) {
            if (i == j) {
                total1 += board[i][j];
            }
            if (i == (dimension - 1 - j)) {
                total2 += board[i][j];
            }
        }
    }
    if (total1 == xwins || total1 == owins) {
        System.out.println("diagonal 1");
        return false;
    }
    if (total2 == xwins || total2 == owins) {
        System.out.println("diagonal 2");
        return false;
    }
    return true;
}
查看更多
残风、尘缘若梦
7楼-- · 2019-01-01 05:26

You know a winning move can only happen after X or O has made their most recent move, so you can only search row/column with optional diag that are contained in that move to limit your search space when trying to determine a winning board. Also since there are a fixed number of moves in a draw tic-tac-toe game once the last move is made if it wasn't a winning move it's by default a draw game.

edit: this code is for an n by n board with n in a row to win (3x3 board requries 3 in a row, etc)

edit: added code to check anti diag, I couldn't figure out a non loop way to determine if the point was on the anti diag so thats why that step is missing

public class TripleT {

    enum State{Blank, X, O};

    int n = 3;
    State[][] board = new State[n][n];
    int moveCount;

    void Move(int x, int y, State s){
        if(board[x][y] == State.Blank){
            board[x][y] = s;
        }
        moveCount++;

        //check end conditions

        //check col
        for(int i = 0; i < n; i++){
            if(board[x][i] != s)
                break;
            if(i == n-1){
                //report win for s
            }
        }

        //check row
        for(int i = 0; i < n; i++){
            if(board[i][y] != s)
                break;
            if(i == n-1){
                //report win for s
            }
        }

        //check diag
        if(x == y){
            //we're on a diagonal
            for(int i = 0; i < n; i++){
                if(board[i][i] != s)
                    break;
                if(i == n-1){
                    //report win for s
                }
            }
        }

        //check anti diag (thanks rampion)
        if(x + y == n - 1){
            for(int i = 0; i < n; i++){
                if(board[i][(n-1)-i] != s)
                    break;
                if(i == n-1){
                    //report win for s
                }
            }
        }

        //check draw
        if(moveCount == (Math.pow(n, 2) - 1)){
            //report draw
        }
    }
}
查看更多
登录 后发表回答