Anyone tinkering with Python long enough has been bitten (or torn to pieces) by the following issue:
def foo(a=[]):
a.append(5)
return a
Python novices would expect this function to always return a list with only one element: [5]
. The result is instead very different, and very astonishing (for a novice):
>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()
A manager of mine once had his first encounter with this feature, and called it "a dramatic design flaw" of the language. I replied that the behavior had an underlying explanation, and it is indeed very puzzling and unexpected if you don't understand the internals. However, I was not able to answer (to myself) the following question: what is the reason for binding the default argument at function definition, and not at function execution? I doubt the experienced behavior has a practical use (who really used static variables in C, without breeding bugs?)
Edit:
Baczek made an interesting example. Together with most of your comments and Utaal's in particular, I elaborated further:
>>> def a():
... print("a executed")
... return []
...
>>>
>>> def b(x=a()):
... x.append(5)
... print(x)
...
a executed
>>> b()
[5]
>>> b()
[5, 5]
To me, it seems that the design decision was relative to where to put the scope of parameters: inside the function or "together" with it?
Doing the binding inside the function would mean that x
is effectively bound to the specified default when the function is called, not defined, something that would present a deep flaw: the def
line would be "hybrid" in the sense that part of the binding (of the function object) would happen at definition, and part (assignment of default parameters) at function invocation time.
The actual behavior is more consistent: everything of that line gets evaluated when that line is executed, meaning at function definition.
AFAICS no one has yet posted the relevant part of the documentation:
You can get round this by replacing the object (and therefore the tie with the scope):
Ugly, but it works.
Every other answer explains why this is actually a nice and desired behavior, or why you shouldn't be needing this anyway. Mine is for those stubborn ones who want to exercise their right to bend the language to their will, not the other way around.
We will "fix" this behavior with a decorator that will copy the default value instead of reusing the same instance for each positional argument left at its default value.
Now let's redefine our function using this decorator:
This is particularly neat for functions that take multiple arguments. Compare:
with
It's important to note that the above solution breaks if you try to use keyword args, like so:
The decorator could be adjusted to allow for that, but we leave this as an exercise for the reader ;)
It's a performance optimization. As a result of this functionality, which of these two function calls do you think is faster?
I'll give you a hint. Here's the disassembly (see http://docs.python.org/library/dis.html):
#
1#
2As you can see, there is a performance benefit when using immutable default arguments. This can make a difference if it's a frequently called function or the default argument takes a long time to construct. Also, bear in mind that Python isn't C. In C you have constants that are pretty much free. In Python you don't have this benefit.
I am going to demonstrate an alternative structure to pass a default list value to a function (it works equally well with dictionaries).
As others have extensively commented, the list parameter is bound to the function when it is defined as opposed to when it is executed. Because lists and dictionaries are mutable, any alteration to this parameter will affect other calls to this function. As a result, subsequent calls to the function will receive this shared list which may have been altered by any other calls to the function. Worse yet, two parameters are using this function's shared parameter at the same time oblivious to the changes made by the other.
Wrong Method (probably...):
You can verify that they are one and the same object by using
id
:Per Brett Slatkin's "Effective Python: 59 Specific Ways to Write Better Python", Item 20: Use
None
and Docstrings to specify dynamic default arguments (p. 48)This implementation ensures that each call to the function either receives the default list or else the list passed to the function.
Preferred Method:
There may be legitimate use cases for the 'Wrong Method' whereby the programmer intended the default list parameter to be shared, but this is more likely the exception than the rule.
A simple workaround using None