“Least Astonishment” and the Mutable Default Argum

2019-09-11 04:24发布

Anyone tinkering with Python long enough has been bitten (or torn to pieces) by the following issue:

def foo(a=[]):
    a.append(5)
    return a

Python novices would expect this function to always return a list with only one element: [5]. The result is instead very different, and very astonishing (for a novice):

>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()

A manager of mine once had his first encounter with this feature, and called it "a dramatic design flaw" of the language. I replied that the behavior had an underlying explanation, and it is indeed very puzzling and unexpected if you don't understand the internals. However, I was not able to answer (to myself) the following question: what is the reason for binding the default argument at function definition, and not at function execution? I doubt the experienced behavior has a practical use (who really used static variables in C, without breeding bugs?)

Edit:

Baczek made an interesting example. Together with most of your comments and Utaal's in particular, I elaborated further:

>>> def a():
...     print("a executed")
...     return []
... 
>>>            
>>> def b(x=a()):
...     x.append(5)
...     print(x)
... 
a executed
>>> b()
[5]
>>> b()
[5, 5]

To me, it seems that the design decision was relative to where to put the scope of parameters: inside the function or "together" with it?

Doing the binding inside the function would mean that x is effectively bound to the specified default when the function is called, not defined, something that would present a deep flaw: the def line would be "hybrid" in the sense that part of the binding (of the function object) would happen at definition, and part (assignment of default parameters) at function invocation time.

The actual behavior is more consistent: everything of that line gets evaluated when that line is executed, meaning at function definition.

30条回答
Evening l夕情丶
2楼-- · 2019-09-11 05:02

Why don't you introspect?

I'm really surprised no one has performed the insightful introspection offered by Python (2 and 3 apply) on callables.

Given a simple little function func defined as:

>>> def func(a = []):
...    a.append(5)

When Python encounters it, the first thing it will do is compile it in order to create a code object for this function. While this compilation step is done, Python evaluates* and then stores the default arguments (an empty list [] here) in the function object itself. As the top answer mentioned: the list a can now be considered a member of the function func.

So, let's do some introspection, a before and after to examine how the list gets expanded inside the function object. I'm using Python 3.x for this, for Python 2 the same applies (use __defaults__ or func_defaults in Python 2; yes, two names for the same thing).

Function Before Execution:

>>> def func(a = []):
...     a.append(5)
...     

After Python executes this definition it will take any default parameters specified (a = [] here) and cram them in the __defaults__ attribute for the function object (relevant section: Callables):

>>> func.__defaults__
([],)

O.k, so an empty list as the single entry in __defaults__, just as expected.

Function After Execution:

Let's now execute this function:

>>> func()

Now, let's see those __defaults__ again:

>>> func.__defaults__
([5],)

Astonished? The value inside the object changes! Consecutive calls to the function will now simply append to that embedded list object:

>>> func(); func(); func()
>>> func.__defaults__
([5, 5, 5, 5],)

So, there you have it, the reason why this 'flaw' happens, is because default arguments are part of the function object. There's nothing weird going on here, it's all just a bit surprising.

The common solution to combat this is to use None as the default and then initialize in the function body:

def func(a = None):
    # or: a = [] if a is None else a
    if a is None:
        a = []

Since the function body is executed anew each time, you always get a fresh new empty list if no argument was passed for a.


To further verify that the list in __defaults__ is the same as that used in the function func you can just change your function to return the id of the list a used inside the function body. Then, compare it to the list in __defaults__ (position [0] in __defaults__) and you'll see how these are indeed refering to the same list instance:

>>> def func(a = []): 
...     a.append(5)
...     return id(a)
>>>
>>> id(func.__defaults__[0]) == func()
True

All with the power of introspection!


* To verify that Python evaluates the default arguments during compilation of the function, try executing the following:

def bar(a=input('Did you just see me without calling the function?')): 
    pass  # use raw_input in Py2

as you'll notice, input() is called before the process of building the function and binding it to the name bar is made.

查看更多
Ridiculous、
3楼-- · 2019-09-11 05:02

Python: The Mutable Default Argument

Default arguments get evaluated at the time the function is compiled into a function object. When used by the function, multiple times by that function, they are and remain the same object.

When they are mutable, when mutated (for example, by adding an element to it) they remain mutated on consecutive calls.

They stay mutated because they are the same object each time.

Equivalent code:

Since the list is bound to the function when the function object is compiled and instantiated, this:

def foo(mutable_default_argument=[]): # make a list the default argument
    """function that uses a list"""

is almost exactly equivalent to this:

_a_list = [] # create a list in the globals

def foo(mutable_default_argument=_a_list): # make it the default argument
    """function that uses a list"""

del _a_list # remove globals name binding

Demonstration

Here's a demonstration - you can verify that they are the same object each time they are referenced by

  • seeing that the list is created before the function has finished compiling to a function object,
  • observing that the id is the same each time the list is referenced,
  • observing that the list stays changed when the function that uses it is called a second time,
  • observing the order in which the output is printed from the source (which I conveniently numbered for you):

example.py

print('1. Global scope being evaluated')

def create_list():
    '''noisily create a list for usage as a kwarg'''
    l = []
    print('3. list being created and returned, id: ' + str(id(l)))
    return l

print('2. example_function about to be compiled to an object')

def example_function(default_kwarg1=create_list()):
    print('appending "a" in default default_kwarg1')
    default_kwarg1.append("a")
    print('list with id: ' + str(id(default_kwarg1)) + 
          ' - is now: ' + repr(default_kwarg1))

print('4. example_function compiled: ' + repr(example_function))


if __name__ == '__main__':
    print('5. calling example_function twice!:')
    example_function()
    example_function()

and running it with python example.py:

1. Global scope being evaluated
2. example_function about to be compiled to an object
3. list being created and returned, id: 140502758808032
4. example_function compiled: <function example_function at 0x7fc9590905f0>
5. calling example_function twice!:
appending "a" in default default_kwarg1
list with id: 140502758808032 - is now: ['a']
appending "a" in default default_kwarg1
list with id: 140502758808032 - is now: ['a', 'a']

Does this violate the principle of "Least Astonishment"?

This order of execution is frequently confusing to new users of Python. If you understand the Python execution model, then it becomes quite expected.

The usual instruction to new Python users:

But this is why the usual instruction to new users is to create their default arguments like this instead:

def example_function_2(default_kwarg=None):
    if default_kwarg is None:
        default_kwarg = []

This uses the None singleton as a sentinel object to tell the function whether or not we've gotten an argument other than the default. If we get no argument, then we actually want to use a new empty list, [], as the default.

As the tutorial section on control flow says:

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
    if L is None:
        L = []
    L.append(a)
    return L
查看更多
贪生不怕死
4楼-- · 2019-09-11 05:03

I know nothing about the Python interpreter inner workings (and I'm not an expert in compilers and interpreters either) so don't blame me if I propose anything unsensible or impossible.

Provided that python objects are mutable I think that this should be taken into account when designing the default arguments stuff. When you instantiate a list:

a = []

you expect to get a new list referenced by a.

Why should the a=[] in

def x(a=[]):

instantiate a new list on function definition and not on invocation? It's just like you're asking "if the user doesn't provide the argument then instantiate a new list and use it as if it was produced by the caller". I think this is ambiguous instead:

def x(a=datetime.datetime.now()):

user, do you want a to default to the datetime corresponding to when you're defining or executing x? In this case, as in the previous one, I'll keep the same behaviour as if the default argument "assignment" was the first instruction of the function (datetime.now() called on function invocation). On the other hand, if the user wanted the definition-time mapping he could write:

b = datetime.datetime.now()
def x(a=b):

I know, I know: that's a closure. Alternatively Python might provide a keyword to force definition-time binding:

def x(static a=b):
查看更多
Summer. ? 凉城
5楼-- · 2019-09-11 05:03

I used to think that creating the objects at runtime would be the better approach. I'm less certain now, since you do lose some useful features, though it may be worth it regardless simply to prevent newbie confusion. The disadvantages of doing so are:

1. Performance

def foo(arg=something_expensive_to_compute())):
    ...

If call-time evaluation is used, then the expensive function is called every time your function is used without an argument. You'd either pay an expensive price on each call, or need to manually cache the value externally, polluting your namespace and adding verbosity.

2. Forcing bound parameters

A useful trick is to bind parameters of a lambda to the current binding of a variable when the lambda is created. For example:

funcs = [ lambda i=i: i for i in range(10)]

This returns a list of functions that return 0,1,2,3... respectively. If the behaviour is changed, they will instead bind i to the call-time value of i, so you would get a list of functions that all returned 9.

The only way to implement this otherwise would be to create a further closure with the i bound, ie:

def make_func(i): return lambda: i
funcs = [make_func(i) for i in range(10)]

3. Introspection

Consider the code:

def foo(a='test', b=100, c=[]):
   print a,b,c

We can get information about the arguments and defaults using the inspect module, which

>>> inspect.getargspec(foo)
(['a', 'b', 'c'], None, None, ('test', 100, []))

This information is very useful for things like document generation, metaprogramming, decorators etc.

Now, suppose the behaviour of defaults could be changed so that this is the equivalent of:

_undefined = object()  # sentinel value

def foo(a=_undefined, b=_undefined, c=_undefined)
    if a is _undefined: a='test'
    if b is _undefined: b=100
    if c is _undefined: c=[]

However, we've lost the ability to introspect, and see what the default arguments are. Because the objects haven't been constructed, we can't ever get hold of them without actually calling the function. The best we could do is to store off the source code and return that as a string.

查看更多
对你真心纯属浪费
6楼-- · 2019-09-11 05:03

Already busy topic, but from what I read here, the following helped me realizing how it's working internally:

def bar(a=[]):
     print id(a)
     a = a + [1]
     print id(a)
     return a

>>> bar()
4484370232
4484524224
[1]
>>> bar()
4484370232
4484524152
[1]
>>> bar()
4484370232 # Never change, this is 'class property' of the function
4484523720 # Always a new object 
[1]
>>> id(bar.func_defaults[0])
4484370232
查看更多
Summer. ? 凉城
7楼-- · 2019-09-11 05:05

This behavior is easy explained by:

  1. function (class etc.) declaration is executed only once, creating all default value objects
  2. everything is passed by reference

So:

def x(a=0, b=[], c=[], d=0):
    a = a + 1
    b = b + [1]
    c.append(1)
    print a, b, c
  1. a doesn't change - every assignment call creates new int object - new object is printed
  2. b doesn't change - new array is build from default value and printed
  3. c changes - operation is performed on same object - and it is printed
查看更多
登录 后发表回答