I'm trying to convert a function that finds the nth root in C for a double value from the following link http://rosettacode.org/wiki/Nth_root#C to find the nth root for 8 floats at once using AVX.
Part of that code uses DBL_EPSILON * 10. However, when I convert this to use float with AVX I have to use FLT_EPSILON*1000 or the code hangs and does not converge. When I print out FLT_EPSILON I see it is order 1E-7. But this link, http://www.cplusplus.com/reference/cfloat/ , says it should be 1E-5. When I print out DBL_EPSILON it's 1E-16 but the link says it should only be 1E-9. What's going on?
Here is the code so far (not fully optimized).
#include <stdio.h>
#include <float.h>
#include <immintrin.h> // AVX
inline double abs_(double x) {
return x >= 0 ? x : -x;
}
double pow_(double x, int e)
{
double ret = 1;
for (ret = 1; e; x *= x, e >>= 1) {
if ((e & 1)) ret *= x;
}
return ret;
}
double root(double a, int n)
{
double d, x = 1;
x = a/n;
if (!a) return 0;
//if (n < 1 || (a < 0 && !(n&1))) return 0./0.; /* NaN */
int cnt = 0;
do {
cnt++;
d = (a / pow_(x, n - 1) - x) / n;
x+= d;
} while (abs_(d) >= abs_(x) * (DBL_EPSILON * 10));
printf("%d\n", cnt);
return x;
}
__m256 pow_avx(__m256 x, int e) {
__m256 ret = _mm256_set1_ps(1.0f);
for (; e; x = _mm256_mul_ps(x,x), e >>= 1) {
if ((e & 1)) ret = _mm256_mul_ps(x,ret);
}
return ret;
}
inline __m256 abs_avx (__m256 x) {
return _mm256_max_ps(_mm256_sub_ps(_mm256_setzero_ps(), x), x);
//return x >= 0 ? x : -x;
}
int get_mask(const __m256 d, const __m256 x) {
__m256 ad = abs_avx(d);
__m256 ax = abs_avx(x);
__m256i mask = _mm256_castps_si256(_mm256_cmp_ps(ad, ax, _CMP_GT_OQ));
return _mm_movemask_epi8(_mm256_castsi256_si128(mask)) + _mm_movemask_epi8(_mm256_extractf128_si256(mask,1));
}
__m256 root_avx(__m256 a, int n) {
printf("%e\n", FLT_EPSILON);
printf("%e\n", DBL_EPSILON);
printf("%e\n", FLT_EPSILON*1000.0f);
__m256 d;
__m256 x = _mm256_set1_ps(1.0f);
//if (!a) return 0;
//if (n < 1 || (a < 0 && !(n&1))) return 0./0.; /* NaN */
__m256 in = _mm256_set1_ps(1.0f/n);
__m256 xtmp;
do {
d = _mm256_rcp_ps(pow_avx(x, n - 1));
d = _mm256_sub_ps(_mm256_mul_ps(a,d),x);
d = _mm256_mul_ps(d,in);
//d = (a / pow_avx(x, n - 1) - x) / n;
x = _mm256_add_ps(x, d); //x+= d;
xtmp =_mm256_mul_ps(x, _mm256_set1_ps(FLT_EPSILON*100.0f));
//} while (abs_(d) >= abs_(x) * (DBL_EPSILON * 10));
} while (get_mask(d, xtmp));
return x;
}
int main()
{
__m256 d = _mm256_set1_ps(16.0f);
__m256 out = root_avx(d, 4);
float result[8];
int i;
_mm256_storeu_ps(result, out);
for(i=0; i<8; i++) {
printf("%f\n", result[i]);
} printf("\n");
//double x = 16;
//printf("root(%g, 15) = %g\n", x, root(x, 4));
//double x = pow_(-3.14159, 15);
//printf("root(%g, 15) = %g\n", x, root(x, 15));
return 0;
}
1e-5
is simply the maximum value the C standard allows an implementation to use forFLT_EPSILON
. In practice, you'll be using IEEE-754 single-precision, which has an epsilon of 2-23, which is approximately1e-7
._mm256_rcp_ps
, which maps to thercpps
instruction, performs only an approximate reciprocal. The Intel 64 and IA-32 Architectures Software Developer’s Manual says its relative error may be up to 1.5•2-12. This is insufficient to cause the root finder to converge with accuracy100*FLT_EPSILON
.You could use an exact division, such as:
or add some refinement steps for the reciprocal estimate.
Incidentally, if your compiler supports using regular C operators with SIMD objects, consider using the regular C operators instead: