How does Python's super() work with multiple i

2018-12-31 01:04发布

I'm pretty much new in Python object oriented programming and I have trouble understanding the super() function (new style classes) especially when it comes to multiple inheritance.

For example if you have something like:

class First(object):
    def __init__(self):
        print "first"

class Second(object):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print "that's it"

What I don't get is: will the Third() class inherit both constructor methods? If yes, then which one will be run with super() and why?

And what if you want to run the other one? I know it has something to do with Python method resolution order (MRO).

12条回答
临风纵饮
2楼-- · 2018-12-31 01:25

This is detailed with a reasonable amount of detail by Guido himself in his blog post Method Resolution Order (including two earlier attempts).

In your example, Third() will call First.__init__. Python looks for each attribute in the class's parents as they are listed left to right. In this case we are looking for __init__. So, if you define

class Third(First, Second):
    ...

Python will start by looking at First, and, if First doesn't have the attribute, then it will look at Second.

This situation becomes more complex when inheritance starts crossing paths (for example if First inherited from Second). Read the link above for more details, but, in a nutshell, Python will try to maintain the order in which each class appears on the inheritance list, starting with the child class itself.

So, for instance, if you had:

class First(object):
    def __init__(self):
        print "first"

class Second(First):
    def __init__(self):
        print "second"

class Third(First):
    def __init__(self):
        print "third"

class Fourth(Second, Third):
    def __init__(self):
        super(Fourth, self).__init__()
        print "that's it"

the MRO would be [Fourth, Second, Third, First].

By the way: if Python cannot find a coherent method resolution order, it'll raise an exception, instead of falling back to a behaviour which might surprise the user.

Edited to add example of an ambiguous MRO:

class First(object):
    def __init__(self):
        print "first"

class Second(First):
    def __init__(self):
        print "second"

class Third(First, Second):
    def __init__(self):
        print "third"

Should Third's MRO be [First, Second] or [Second, First]? There's no obvious expectation, and Python will raise an error:

TypeError: Error when calling the metaclass bases
    Cannot create a consistent method resolution order (MRO) for bases Second, First

Edit: I see several people arguing that the examples above lack super() calls, so let me explain: The point of the examples is to show how the MRO is constructed. They are not intended to print "first\nsecond\third" or whatever. You can – and should, of course, play around with the example, add super() calls, see what happens, and gain a deeper understanding of Python's inheritance model. But my goal here is to keep it simple and show how the MRO is built. And it is built as I explained:

>>> Fourth.__mro__
(<class '__main__.Fourth'>,
 <class '__main__.Second'>, <class '__main__.Third'>,
 <class '__main__.First'>,
 <type 'object'>)
查看更多
牵手、夕阳
3楼-- · 2018-12-31 01:25

I wanted to elaborate the answer by lifeless a bit because when I started reading about how to use super() in a multiple inheritance hierarchy in Python, I did't get it immediately.

What you need to understand is that super(MyClass, self).__init__() provides the next __init__ method according to the used Method Resolution Ordering (MRO) algorithm in the context of the complete inheritance hierarchy.

This last part is crucial to understand. Let's consider the example again:

class First(object):
  def __init__(self):
    super(First, self).__init__()
    print "first"

class Second(object):
  def __init__(self):
    super(Second, self).__init__()
    print "second"

class Third(First, Second):
  def __init__(self):
    super(Third, self).__init__()
    print "that's it"

According to this article about Method Resolution Order by Guido van Rossum, the order to resolve __init__ is calculated (before Python 2.3) using a "depth-first left-to-right traversal" :

Third --> First --> object --> Second --> object

After removing all duplicates, except for the last one, we get :

Third --> First --> Second --> object

So, lets follow what happens when we instantiate an instance of the Third class, e.g. x = Third().

  1. According to MRO __init__ of Third is called first.

  2. Next, according to the MRO, inside the __init__ method super(Third, self).__init__() resolves to the __init__ method of First, which gets called.

  3. Inside __init__ of First super(First, self).__init__() calls the __init__ of Second, because that is what the MRO dictates!

  4. Inside __init__ of Second super(Second, self).__init__() calls the __init__ of object, which amounts to nothing. After that "second" is printed.

  5. After super(First, self).__init__() completed, "first" is printed.

  6. After super(Third, self).__init__() completed, "that's it" is printed.

This details out why instantiating Third() results in to :

>>> x = Third()
second
first
that's it

The MRO algorithm has been improved from Python 2.3 onwards to work well in complex cases, but I guess that using the "depth-first left-to-right traversal" + "removing duplicates expect for the last" still works in most cases (please comment if this is not the case). Be sure to read the blog post by Guido!

查看更多
孤独总比滥情好
4楼-- · 2018-12-31 01:26

I understand this doesn't directly answer the super() question, but I feel it's relevant enough to share.

There is also a way to directly call each inherited class:


class First(object):
    def __init__(self):
        print '1'

class Second(object):
    def __init__(self):
        print '2'

class Third(First, Second):
    def __init__(self):
        Second.__init__(self)

Just note that if you do it this way, you'll have to call each manually as I'm pretty sure First's __init__() won't be called.

查看更多
无与为乐者.
5楼-- · 2018-12-31 01:32

This is to how I solved to issue of having multiple inheritance with different variables for initialization and having multiple MixIns with the same function call. I had to explicitly add variables to passed **kwargs and add a MixIn interface to be an endpoint for super calls.

Here A is an extendable base class and B and C are MixIn classes both who provide function f. A and B both expect parameter v in their __init__ and C expects w. The function f takes one parameter y. Q inherits from all three classes. MixInF is the mixin interface for B and C.


class A(object):
    def __init__(self, v, *args, **kwargs):
        print "A:init:v[{0}]".format(v)
        kwargs['v']=v
        super(A, self).__init__(*args, **kwargs)
        self.v = v


class MixInF(object):
    def __init__(self, *args, **kwargs):
        print "IObject:init"
    def f(self, y):
        print "IObject:y[{0}]".format(y)


class B(MixInF):
    def __init__(self, v, *args, **kwargs):
        print "B:init:v[{0}]".format(v)
        kwargs['v']=v
        super(B, self).__init__(*args, **kwargs)
        self.v = v
    def f(self, y):
        print "B:f:v[{0}]:y[{1}]".format(self.v, y)
        super(B, self).f(y)


class C(MixInF):
    def __init__(self, w, *args, **kwargs):
        print "C:init:w[{0}]".format(w)
        kwargs['w']=w
        super(C, self).__init__(*args, **kwargs)
        self.w = w
    def f(self, y):
        print "C:f:w[{0}]:y[{1}]".format(self.w, y)
        super(C, self).f(y)


class Q(C,B,A):
    def __init__(self, v, w):
        super(Q, self).__init__(v=v, w=w)
    def f(self, y):
        print "Q:f:y[{0}]".format(y)
        super(Q, self).f(y)
查看更多
高级女魔头
6楼-- · 2018-12-31 01:35

Your code, and the other answers, are all buggy. They are missing the super() calls in the first two classes that are required for co-operative subclassing to work.

Here is a fixed version of the code:

class First(object):
    def __init__(self):
        super(First, self).__init__()
        print("first")

class Second(object):
    def __init__(self):
        super(Second, self).__init__()
        print("second")

class Third(First, Second):
    def __init__(self):
        super(Third, self).__init__()
        print("third")

The super() call finds the next method in the MRO at each step, which is why First and Second have to have it too, otherwise execution stops at the end of Second.__init__().

This is what I get:

>>> Third()
second
first
third
查看更多
梦寄多情
7楼-- · 2018-12-31 01:35

Overall

Assuming everything descends from object (you are on your own if it doesn't), Python computes a method resolution order (MRO) based on your class inheritance tree. The MRO satisfies 3 properties:

  • Children of a class come before their parents
  • Left parents come before right parents
  • A class only appears once in the MRO

If no such ordering exists, Python errors. The inner workings of this is a C3 Linerization of the classes ancestry. Read all about it here: https://www.python.org/download/releases/2.3/mro/

Thus, in both of the examples below, it is:

  1. Child
  2. Left
  3. Right
  4. Parent

When a method is called, the first occurrence of that method in the MRO is the one that is called. Any class that doesn't implement that method is skipped. Any call to super within that method will call the next occurrence of that method in the MRO. Consequently, it matters both what order you place classes in inheritance, and where you put the calls to super in the methods.

With super first in each method

class Parent(object):
    def __init__(self):
        super(Parent, self).__init__()
        print "parent"

class Left(Parent):
    def __init__(self):
        super(Left, self).__init__()
        print "left"

class Right(Parent):
    def __init__(self):
        super(Right, self).__init__()
        print "right"

class Child(Left, Right):
    def __init__(self):
        super(Child, self).__init__()
        print "child"

Child() Outputs:

parent
right
left
child

With super last in each method

class Parent(object):
    def __init__(self):
        print "parent"
        super(Parent, self).__init__()

class Left(Parent):
    def __init__(self):
        print "left"
        super(Left, self).__init__()

class Right(Parent):
    def __init__(self):
        print "right"
        super(Right, self).__init__()

class Child(Left, Right):
    def __init__(self):
        print "child"
        super(Child, self).__init__()

Child() Outputs:

child
left
right
parent
查看更多
登录 后发表回答