Using python PIL to turn a RGB image into a pure b

2019-01-13 03:24发布

I'm using the Python Imaging Library for some very simple image manipulation, however I'm having trouble converting a greyscale image to a monochrome (black and white) image. If I save after changing the image to greyscale (convert('L')) then the image renders as you would expect. However, if I convert the image to a monochrome, single-band image it just gives me noise as you can see in the images below. Is there a simple way to take a colour png image to a pure black and white image using PIL / python?

from PIL import Image 
import ImageEnhance
import ImageFilter
from scipy.misc import imsave
image_file = Image.open("convert_image.png") # open colour image
image_file= image_file.convert('L') # convert image to monochrome - this works
image_file= image_file.convert('1') # convert image to black and white
imsave('result_col.png', image_file)

Original Image Converted Image

6条回答
做个烂人
2楼-- · 2019-01-13 03:40
from PIL import Image 
image_file = Image.open("convert_image.png") # open colour image
image_file = image_file.convert('1') # convert image to black and white
image_file.save('result.png')

yields

enter image description here

查看更多
Viruses.
3楼-- · 2019-01-13 03:40

A PIL only solution for creating a bi-level (black and white) image with a custom threshold:

from PIL import Image
img = Image.open('mB96s.png')
thresh = 200
fn = lambda x : 255 if x > thresh else 0
r = img.convert('L').point(fn, mode='1')
r.save('foo.png')

With just

r = img.convert('1')
r.save('foo.png')

you get a dithered image.

查看更多
趁早两清
4楼-- · 2019-01-13 03:42

Because from PIL convert("1") return the value "True" or "False". Try to print it, will be show: [False, False, True] with single bracket.

Whereas the numpy array use double bracket like this [[False, False, True]] or [[0, 0, 1]], right?

查看更多
疯言疯语
5楼-- · 2019-01-13 03:50

Another option (which is useful e.g. for scientific purposes when you need to work with segmentation masks) is simply apply a threshold:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""Binarize (make it black and white) an image with Python."""

from PIL import Image
from scipy.misc import imsave
import numpy


def binarize_image(img_path, target_path, threshold):
    """Binarize an image."""
    image_file = Image.open(img_path)
    image = image_file.convert('L')  # convert image to monochrome
    image = numpy.array(image)
    image = binarize_array(image, threshold)
    imsave(target_path, image)


def binarize_array(numpy_array, threshold=200):
    """Binarize a numpy array."""
    for i in range(len(numpy_array)):
        for j in range(len(numpy_array[0])):
            if numpy_array[i][j] > threshold:
                numpy_array[i][j] = 255
            else:
                numpy_array[i][j] = 0
    return numpy_array


def get_parser():
    """Get parser object for script xy.py."""
    from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
    parser = ArgumentParser(description=__doc__,
                            formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("-i", "--input",
                        dest="input",
                        help="read this file",
                        metavar="FILE",
                        required=True)
    parser.add_argument("-o", "--output",
                        dest="output",
                        help="write binarized file hre",
                        metavar="FILE",
                        required=True)
    parser.add_argument("--threshold",
                        dest="threshold",
                        default=200,
                        type=int,
                        help="Threshold when to show white")
    return parser


if __name__ == "__main__":
    args = get_parser().parse_args()
    binarize_image(args.input, args.output, args.threshold)

It looks like this for ./binarize.py -i convert_image.png -o result_bin.png --threshold 200:

enter image description here

查看更多
甜甜的少女心
6楼-- · 2019-01-13 03:50

Judging by the results obtained by unutbu I conclude that scipy's imsave does not understand monochrome (mode 1) images.

查看更多
等我变得足够好
7楼-- · 2019-01-13 04:00

As Martin Thoma has said, you need to normally apply thresholding. But you can do this using simple vectorization which will run much faster than the for loop that is used in that answer.

The code below converts the pixels of an image into 0 (black) and 1 (white).

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

#Pixels higher than this will be 1. Otherwise 0.
THRESHOLD_VALUE = 200

#Load image and convert to greyscale
img = Image.open("photo.png")
img = img.convert("L")

imgData = np.asarray(img)
thresholdedData = (imgData > THRESHOLD_VALUE) * 1.0

plt.imshow(thresholdedData)
plt.show()
查看更多
登录 后发表回答