I have a dataframe as follows:
ref, type, amount
001, foo, 10
001, foo, 5
001, bar, 50
001, bar, 5
001, test, 100
001, test, 90
002, foo, 20
002, foo, 35
002, bar, 75
002, bar, 80
002, test, 150
002, test, 110
This is what I'm trying to get:
ref, type, amount, foo, bar, test
001, foo, 10, 15, 55, 190
001, foo, 5, 15, 55, 190
001, bar, 50, 15, 55, 190
001, bar, 5, 15, 55, 190
001, test, 100, 15, 55, 190
001, test, 90, 15, 55, 190
002, foo, 20, 55, 155, 260
002, foo, 35, 55, 155, 260
002, bar, 75, 55, 155, 260
002, bar, 80, 55, 155, 260
002, test, 150, 55, 155, 260
002, test, 110, 55, 155, 260
So I have this:
df.groupby('ref')['amount'].transform(sum)
But how can I filter it such that the above only applies to rows where type=foo
or bar
or test
?
I think you need
groupby
withunstack
and thenmerge
to originalDataFrame
:Timings:
A solution using pivot table :