I need to group sets of transactions in different groups. My data in a text file as this format:
T1 17 20 22 35 37 60 62
T2 39 51 53 54 57 65 73
T3 17 20 21 22 34 37 62
T4 20 22 54 57 65 73 45
T5 20 54 57 65 73 75 80
T6 2 20 54 57 59 63 71
T7 2 20 22 57 59 71 66
T8 17 20 28 29 30 34 35
T9 16 20 28 32 54 57 65
T10 16 20 22 28 57 59 71
-
-
and so on, over 5000 lines. Each line represents one transaction.
What I did so far:
txIn<-read.transactions("data2.txt",format="basket",sep=" ")
d<-dissimilarity(txIn,method="Jaccard")
library("cluster")
clustersA<-pam(d,k=100)
txOut <- paste("txOu", ".txt")
write.table(clustersA$clustering, file="txOu",sep=" ")
but the file stores the transaction# with its cluster like:
"x"
"1" 1
"2" 1
"3" 1
"4" 1
"5" 1
"6" 2
"7" 2
"8" 2
"9" 1
"10" 2
-
-
and I need to save it as, for example:
cluster 1:
T1 17 20 22 35 37 60 62
T2 39 51 53 54 57 65 73
T3 17 20 21 22 34 37 62
T4 20 22 54 57 65 73 45
T5 20 54 57 65 73 75 80
T9 16 20 28 32 54 57 65
cluster 2:
T6 2 20 54 57 59 63 71
T7 2 20 22 57 59 71 66
T8 17 20 28 29 30 34 35
T10 16 20 22 28 57 59 71
-
-
and so on, because I want to deal with each cluster individually.
Please I have searched a lot, I need any information, example, doc, any help.
Are you sure you want to do clustering?
To me, it sounds like you might be more interested in frequent itemset mining.