This is not intended as a bug report--even if these leaks may be a result of mpl bugs, please interpret the question ask asking for a way around them.
The problem is simple: plot a large chunk of data (using plot() or scatter()), clear/release everything, garbage collect, but still not nearly all the memory is released.
Line # Mem usage Increment Line Contents
================================================
391 122.312 MiB 0.000 MiB @profile
392 def plot_network_scatterplot(t_sim_stop, spikes_mat, n_cells_per_area, n_cells, basedir_output, condition_idx):
393
394 # make network scatterplot
395 122.312 MiB 0.000 MiB w, h = plt.figaspect(.1/(t_sim_stop/1E3))
396 122.324 MiB 0.012 MiB fig = mpl.figure.Figure(figsize=(10*w, 10*h))
397 122.328 MiB 0.004 MiB canvas = FigureCanvas(fig)
398 122.879 MiB 0.551 MiB ax = fig.add_axes([.01, .1, .98, .8])
399 134.879 MiB 12.000 MiB edgecolor_vec = np.array([(1., 0., 0.), (0., 0., 1.)])[1-((spikes_mat[:,3]+1)/2).astype(np.int)]
400 '''pathcoll = ax.scatter(spikes_mat[:,1],
401 spikes_mat[:,0] + n_cells_per_area * (spikes_mat[:,2]-1),
402 s=.5,
403 c=spikes_mat[:,3],
404 edgecolor=edgecolor_vec)'''
405 440.098 MiB 305.219 MiB pathcoll = ax.plot(np.random.rand(10000000), np.random.rand(10000000))
406 440.098 MiB 0.000 MiB ax.set_xlim([0., t_sim_stop])
407 440.098 MiB 0.000 MiB ax.set_ylim([1, n_cells])
408 440.098 MiB 0.000 MiB plt.xlabel('Time [ms]')
409 440.098 MiB 0.000 MiB plt.ylabel('Cell ID')
410 440.098 MiB 0.000 MiB plt.suptitle('Network activity scatterplot')
411 #plt.savefig(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
412 931.898 MiB 491.801 MiB canvas.print_figure(os.path.join(basedir_output, 'network_scatterplot-[cond=' + str(condition_idx) + '].png'))
413 #fig.canvas.close()
414 #pathcoll.set_offsets([])
415 #pathcoll.remove()
416 931.898 MiB 0.000 MiB ax.cla()
417 931.898 MiB 0.000 MiB ax.clear()
418 931.898 MiB 0.000 MiB fig.clf()
419 931.898 MiB 0.000 MiB fig.clear()
420 931.898 MiB 0.000 MiB plt.clf()
421 932.352 MiB 0.453 MiB plt.cla()
422 932.352 MiB 0.000 MiB plt.close(fig)
423 932.352 MiB 0.000 MiB plt.close()
424 932.352 MiB 0.000 MiB del fig
425 932.352 MiB 0.000 MiB del ax
426 932.352 MiB 0.000 MiB del pathcoll
427 932.352 MiB 0.000 MiB del edgecolor_vec
428 932.352 MiB 0.000 MiB del canvas
429 505.094 MiB -427.258 MiB gc.collect()
430 505.094 MiB 0.000 MiB plt.close('all')
431 505.094 MiB 0.000 MiB gc.collect()
I have tried many combinations and different orders of all the clear/release to no avail. I've tried not using an explicit fig/canvas creation but just using mpl.pyplot, with the same results.
Is there any way to free this memory, and go out with the 122.312 that I came in?
Cheers!
Alex Martelli explains
Furthermore,
Therefore, you instead of trying to clear the figure and axes, delete references and garbage collecting (all of which will not work), you can instead use
multiprocessing
to runplot_network_scatterplot
in a separate process: