I am trying to run random forest classification by using Spark ML api but I am having issues with creating right data frame input into pipeline.
Here is sample data:
age,hours_per_week,education,sex,salaryRange
38,40,"hs-grad","male","A"
28,40,"bachelors","female","A"
52,45,"hs-grad","male","B"
31,50,"masters","female","B"
42,40,"bachelors","male","B"
age and hours_per_week are integers while other features including label salaryRange are categorical (String)
Loading this csv file (lets call it sample.csv) can be done by Spark csv library like this:
val data = sqlContext.csvFile("/home/dusan/sample.csv")
By default all columns are imported as string so we need to change "age" and "hours_per_week" to Int:
val toInt = udf[Int, String]( _.toInt)
val dataFixed = data.withColumn("age", toInt(data("age"))).withColumn("hours_per_week",toInt(data("hours_per_week")))
Just to check how schema looks now:
scala> dataFixed.printSchema
root
|-- age: integer (nullable = true)
|-- hours_per_week: integer (nullable = true)
|-- education: string (nullable = true)
|-- sex: string (nullable = true)
|-- salaryRange: string (nullable = true)
Then lets set the cross validator and pipeline:
val rf = new RandomForestClassifier()
val pipeline = new Pipeline().setStages(Array(rf))
val cv = new CrossValidator().setNumFolds(10).setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator)
Error shows up when running this line:
val cmModel = cv.fit(dataFixed)
java.lang.IllegalArgumentException: Field "features" does not exist.
It is possible to set label column and feature column in RandomForestClassifier ,however I have 4 columns as predictors (features) not only one.
How I should organize my data frame so it has label and features columns organized correctly?
For your convenience here is full code :
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.tuning.CrossValidator
import org.apache.spark.ml.Pipeline
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions._
import org.apache.spark.mllib.linalg.{Vector, Vectors}
object SampleClassification {
def main(args: Array[String]): Unit = {
//set spark context
val conf = new SparkConf().setAppName("Simple Application").setMaster("local");
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import com.databricks.spark.csv._
//load data by using databricks "Spark CSV Library"
val data = sqlContext.csvFile("/home/dusan/sample.csv")
//by default all columns are imported as string so we need to change "age" and "hours_per_week" to Int
val toInt = udf[Int, String]( _.toInt)
val dataFixed = data.withColumn("age", toInt(data("age"))).withColumn("hours_per_week",toInt(data("hours_per_week")))
val rf = new RandomForestClassifier()
val pipeline = new Pipeline().setStages(Array(rf))
val cv = new CrossValidator().setNumFolds(10).setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator)
// this fails with error
//java.lang.IllegalArgumentException: Field "features" does not exist.
val cmModel = cv.fit(dataFixed)
}
}
Thanks for help!
According to spark documentation on mllib - random trees, seems to me that you should define the features map that you are using and the points should be a labeledpoint.
This will tell the algorithm which column should be used as prediction and which ones are the features.
https://spark.apache.org/docs/latest/mllib-decision-tree.html
As of Spark 1.4, you can use Transformer org.apache.spark.ml.feature.VectorAssembler. Just provide column names you want to be features.
and add it to your pipeline.
You simply need to make sure that you have a
"features"
column in your dataframe that is of typeVectorUDF
as show below:EDIT1
Essentially there need to be two fields in your data frame "features" for feature vector and "label" for instance labels. Instance must be of type
Double
.To create a "features" fields with
Vector
type first create audf
as show below:Now to also encode the "label" field, create another
udf
as shown below:Now we transform original dataframe using these two
udf
:Note that there can be extra columns / fields present in the dataframe, but in this case I have selected only
features
andlabel
:Now its upto you to set correct parameters for your learning algorithm to make it work.