I have implemented the attention (Eq. 1) of https://arxiv.org/pdf/1710.10903.pdf but it's clearly not memory efficient and can run only a single model on my GPU (it takes 7-10GB).
Currently, I have
class MyModule(nn.Module):
def __init__(self, in_features, out_features):
super(MyModule, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.W = nn.Parameter(nn.init.xavier_uniform(torch.Tensor(in_features, out_features).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True)
self.a = nn.Parameter(nn.init.xavier_uniform(torch.Tensor(2*out_features, 1).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True)
def forward(self, input):
h = torch.mm(input, self.W)
N = h.size()[0]
a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features)
e = F.elu(torch.matmul(a_input, self.a).squeeze(2))
return e
Where my insight to compute all the e_ij terms is
In [8]: import torch
In [9]: import numpy as np
In [10]: h = torch.LongTensor(np.array([[1,1], [2,2], [3,3]]))
In [11]: N=3
In [12]: h.repeat(1, N).view(N * N, -1) Out[12]:
1 1
1 1
1 1
2 2
2 2
2 2
3 3
3 3
3 3
[torch.LongTensor of size 9x2]
In [13]: h.repeat(N, 1) Out[13]:
1 1
2 2
3 3
1 1
2 2
3 3
1 1
2 2
3 3
[torch.LongTensor of size 9x2]
And finally concatenate both hs and feed matrix a.
Is there a way to do it in a more memory-friendly way ?
Maybe you can use sparse tensor to store adj_mat