Too many 'if' statements?

2019-01-12 13:36发布

The following code does work how I need it to, but it's ugly, excessive or a number of other things. I've looked at formulas and attempted to write a few solutions, but I end up with a similar amount of statements.

Is there a type of math formula that would benefit me in this instance or are 16 if statements acceptable?

To explain the code, it's for a kind of simultaneous-turn-based game.. two players have four action buttons each and the results come from an array (0-3), but the variables 'one' & 'two' can be assigned anything if this helps. The result is, 0 = neither win, 1 = p1 wins, 2 = p2 wins, 3 = both win.

public int fightMath(int one, int two) {

    if(one == 0 && two == 0) { result = 0; }
    else if(one == 0 && two == 1) { result = 0; }
    else if(one == 0 && two == 2) { result = 1; }
    else if(one == 0 && two == 3) { result = 2; }
    else if(one == 1 && two == 0) { result = 0; }
    else if(one == 1 && two == 1) { result = 0; }
    else if(one == 1 && two == 2) { result = 2; }
    else if(one == 1 && two == 3) { result = 1; }
    else if(one == 2 && two == 0) { result = 2; }
    else if(one == 2 && two == 1) { result = 1; }
    else if(one == 2 && two == 2) { result = 3; }
    else if(one == 2 && two == 3) { result = 3; }
    else if(one == 3 && two == 0) { result = 1; }
    else if(one == 3 && two == 1) { result = 2; }
    else if(one == 3 && two == 2) { result = 3; }
    else if(one == 3 && two == 3) { result = 3; }

    return result;
}

26条回答
时光不老,我们不散
2楼-- · 2019-01-12 13:54

Other people have already suggested my initial idea, the matrix method, but in addition to consolidating the if statements you can avoid some of what you have by making sure the arguments supplied are in the expected range and by using in-place returns (some coding standards I've seen enforce one-point-of-exit for functions, but I've found that multiple returns are very useful for avoiding arrow coding and with the prevalence of exceptions in Java there's not much point in strictly enforcing such a rule anyway as any uncaught exception thrown inside the method is a possible point of exit anyway). Nesting switch statements is a possibility, but for the small range of values you're checking here I find if statements to be more compact and not likely to result in much of a performance difference, especially if your program is turn-based rather than real-time.

public int fightMath(int one, int two) {
    if (one > 3 || one < 0 || two > 3 || two < 0) {
        throw new IllegalArgumentException("Result is undefined for arguments outside the range [0, 3]");
    }

    if (one <= 1) {
        if (two <= 1) return 0;
        if (two - one == 2) return 1;
        return 2; // two can only be 3 here, no need for an explicit conditional
    }

    // one >= 2
    if (two >= 2) return 3;
    if (two == 1) return 1;
    return 2; // two can only be 0 here
}

This does end up being less readable than it might otherwise be due to the irregularity of parts of the input->result mapping. I favor the matrix style instead due to its simplicity and how you can set up the matrix to make sense visually (though that is in part influenced by my memories of Karnaugh maps):

int[][] results = {{0, 0, 1, 2},
                   {0, 0, 2, 1},
                   {2, 1, 3, 3},
                   {2, 1, 3, 3}};

Update: Given your mention of blocking/hitting, here's a more radical change to the function that utilizes propertied/attribute-holding enumerated types for inputs and the result and also modifies the result a little to account for blocking, which should result in a more readable function.

enum MoveType {
    ATTACK,
    BLOCK;
}

enum MoveHeight {
    HIGH,
    LOW;
}

enum Move {
    // Enum members can have properties/attributes/data members of their own
    ATTACK_HIGH(MoveType.ATTACK, MoveHeight.HIGH),
    ATTACK_LOW(MoveType.ATTACK, MoveHeight.LOW),
    BLOCK_HIGH(MoveType.BLOCK, MoveHeight.HIGH),
    BLOCK_LOW(MoveType.BLOCK, MoveHeight.LOW);

    public final MoveType type;
    public final MoveHeight height;

    private Move(MoveType type, MoveHeight height) {
        this.type = type;
        this.height = height;
    }

    /** Makes the attack checks later on simpler. */
    public boolean isAttack() {
        return this.type == MoveType.ATTACK;
    }
}

enum LandedHit {
    NEITHER,
    PLAYER_ONE,
    PLAYER_TWO,
    BOTH;
}

LandedHit fightMath(Move one, Move two) {
    // One is an attack, the other is a block
    if (one.type != two.type) {
        // attack at some height gets blocked by block at same height
        if (one.height == two.height) return LandedHit.NEITHER;

        // Either player 1 attacked or player 2 attacked; whoever did
        // lands a hit
        if (one.isAttack()) return LandedHit.PLAYER_ONE;
        return LandedHit.PLAYER_TWO;
    }

    // both attack
    if (one.isAttack()) return LandedHit.BOTH;

    // both block
    return LandedHit.NEITHER;
}

You don't even have to change the function itself if you want to add blocks/attacks of more heights, just the enums; adding additional types of moves will probably require modification of the function, though. Also, EnumSets might be more extensible than using extra enums as properties of the main enum, e.g. EnumSet<Move> attacks = EnumSet.of(Move.ATTACK_HIGH, Move.ATTACK_LOW, ...); and then attacks.contains(move) rather than move.type == MoveType.ATTACK, though using EnumSets will probably be slightly slower than direct equals checks.


For the case where a successful block results in a counter, you can replace if (one.height == two.height) return LandedHit.NEITHER; with

if (one.height == two.height) {
    // Successful block results in a counter against the attacker
    if (one.isAttack()) return LandedHit.PLAYER_TWO;
    return LandedHit.PLAYER_ONE;
}

Also, replacing some of the if statements with usage of the ternary operator (boolean_expression ? result_if_true : result_if_false) could make the code more compact (for example, the code in the preceding block would become return one.isAttack() ? LandedHit.PLAYER_TWO : LandedHit.PLAYER_ONE;), but that can lead to harder-to-read oneliners so I wouldn't recommend it for more complex branching.

查看更多
家丑人穷心不美
3楼-- · 2019-01-12 13:54
((two&2)*(1+((one^two)&1))+(one&2)*(2-((one^two)&1)))/2
查看更多
SAY GOODBYE
4楼-- · 2019-01-12 13:57

Since your data set is so small, you can compress everything into 1 long integer and turn it into a formula

public int fightMath(int one,int two)
{
   return (int)(0xF9F66090L >> (2*(one*4 + two)))%4;
}

More bitwise variant:

This makes use of the fact everything is a multiple of 2

public int fightMath(int one,int two)
{
   return (0xF9F66090 >> ((one << 3) | (two << 1))) & 0x3;
}

The Origin of the Magic Constant

What can I say? The world needs magic, sometimes the possibility of something calls for its creation.

The essence of the function that solves OP's problem is a map from 2 numbers (one,two), domain {0,1,2,3} to the range {0,1,2,3}. Each of the answers has approached how to implement that map.

Also, you can see in a number of the answers a restatement of the problem as a map of 1 2-digit base 4 number N(one,two) where one is digit 1, two is digit 2, and N = 4*one + two; N = {0,1,2,...,15} -- sixteen different values, that's important. The output of the function is one 1-digit base 4 number {0,1,2,3} -- 4 different values, also important.

Now, a 1-digit base 4 number can be expressed as a 2-digit base 2 number; {0,1,2,3} = {00,01,10,11}, and so each output can be encoded with only 2 bits. From above, there are only 16 different outputs possible, so 16*2 = 32 bits is all that is necessary to encode the entire map; this can all fit into 1 integer.

The constant M is an encoding of the map m where m(0) is encoded in bits M[0:1], m(1) is encoded in bits M[2:3], and m(n) is encoded in bits M[n*2:n*2+1].

All that remains is indexing and returning the right part of the constant, in this case you can shift M right 2*N times and take the 2 least significant bits, that is (M >> 2*N) & 0x3. The expressions (one << 3) and (two << 1) are just multiplying things out while noting that 2*x = x << 1 and 8*x = x << 3.

查看更多
一夜七次
5楼-- · 2019-01-12 13:58

Let's see what we know

1: your answers are symmetrical for P1 (player one) and P2 (player two). This makes sense for a fighting game but is also something you can take advantage of to improve your logic.

2: 3 beats 0 beats 2 beats 1 beats 3. The only cases not covered by these cases are combinations of 0 vs 1 and 2 vs 3. To put it another way the unique victory table looks like this: 0 beats 2, 1 beats 3, 2 beats 1, 3 beats 0.

3: If 0/1 go up against each other then there's a hitless draw but if 2/3 go up against each then both hit

First, let us build a one-way function telling us if we won:

// returns whether we beat our opponent
public boolean doesBeat(int attacker, int defender) {
  int[] beats = {2, 3, 1, 0};
  return defender == beats[attacker];
}

We can then use this function to compose the final result:

// returns the overall fight result
// bit 0 = one hits
// bit 1 = two hits
public int fightMath(int one, int two)
{
  // Check to see whether either has an outright winning combo
  if (doesBeat(one, two))
    return 1;

  if (doesBeat(two, one))
    return 2;

  // If both have 0/1 then its hitless draw but if both have 2/3 then they both hit.
  // We can check this by seeing whether the second bit is set and we need only check
  // one's value as combinations where they don't both have 0/1 or 2/3 have already
  // been dealt with 
  return (one & 2) ? 3 : 0;
}

While this is arguably more complex and probably slower than the table lookup offered in many answers I believe it is a superior method because it actually encapsulates the logic of your code and describes it to anyone who's reading your code. I think this makes it a better implementation.

(It's been a while since I did any Java so apologies if the syntax is off, hopefully it is still intelligible if I've got it slightly wrong)

By the way, 0-3 clearly mean something; they're not arbitrary values so it would help to name them.

查看更多
SAY GOODBYE
6楼-- · 2019-01-12 13:59

A good point would be to define the rules as text, you can easier derive the correct formula then. This is extracted from laalto's nice array representation:

{ 0, 0, 1, 2 },
{ 0, 0, 2, 1 },
{ 2, 1, 3, 3 },
{ 1, 2, 3, 3 }

And here we go with some general comments, but you should describe them in rule terms:

if(one<2) // left half
{
    if(two<2) // upper left half
    {
        result = 0; //neither hits
    }
    else // lower left half
    {
        result = 1+(one+two)%2; //p2 hits if sum is even
    }
}
else // right half
{
    if(two<2) // upper right half
    {
        result = 1+(one+two+1)%2; //p1 hits if sum is even
    }
    else // lower right half
    {
        return 3; //both hit
    }
}

You could of course crunch this down to less code, but it is generally a good idea to understand what you code rather than finding a compact solution.

if((one<2)&&(two<2)) result = 0; //top left
else if((one>1)&&(two>1)) result = 3; //bottom right
else result = 1+(one+two+((one>1)?1:0))%2; //no idea what that means

Some explanation on the complicated p1/p2 hits would be great, looks interesting!

查看更多
Explosion°爆炸
7楼-- · 2019-01-12 14:00

Since you prefer nested if conditionals , here's another way.
Note that it doesn't use the result member and it doesn't change any state.

public int fightMath(int one, int two) {
    if (one == 0) {
      if (two == 0) { return 0; }
      if (two == 1) { return 0; }
      if (two == 2) { return 1; }
      if (two == 3) { return 2; }
    }   
    if (one == 1) {
      if (two == 0) { return 0; }
      if (two == 1) { return 0; }
      if (two == 2) { return 2; }
      if (two == 3) { return 1; }
    }
    if (one == 2) {
      if (two == 0) { return 2; }
      if (two == 1) { return 1; }
      if (two == 2) { return 3; }
      if (two == 3) { return 3; }
    }
    if (one == 3) {
      if (two == 0) { return 1; }
      if (two == 1) { return 2; }
      if (two == 2) { return 3; }
      if (two == 3) { return 3; }
    }
    return DEFAULT_RESULT;
}
查看更多
登录 后发表回答