I want to adapt the width of the box in the category "random" to the same width of the other boxes in the plot. It is now a single group, whereas the other groups contain two subgroups... Any ideas on how to do that?
Using geom_boxplot(width=0.2)
just changes the width of all boxes. So far I used the following code:
ggplot(TablePerCatchmentAndYear,aes(x=NoiseType, y= POA, fill = TempRes)) +
geom_boxplot(lwd=0.05) + ylim(c(-1.25, 1)) + theme(legend.position='bottom') +
ggtitle('title')+ scale_fill_discrete(name = '')
The data that I used for this is the following table:
TablePerCatchmentAndYear = structure(list(CatchmentModelType = c("2126_Murg_2009_dry_bench_hourly",
"2126_Murg_2009_dry_bench_hourly", "2126_Murg_2009_dry_bench_hourly",
"2126_Murg_2009_dry_bench_hourly", "2126_Murg_2009_dry_bench_hourly",
"2126_Murg_2009_dry_bench_hourly", "2126_Murg_2009_dry_bench_hourly",
"2126_Murg_2009_dry_bench_hourly", "2126_Murg_2009_dry_bench_hourly",
"2126_Murg_2009_dry_bench_hourly", "2126_Murg_2009_dry_LogNormSDdivBy4_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy4_hourly", "2126_Murg_2009_dry_LogNormSDdivBy4_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy4_hourly", "2126_Murg_2009_dry_LogNormSDdivBy4_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy4_hourly", "2126_Murg_2009_dry_LogNormSDdivBy4_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy4_hourly", "2126_Murg_2009_dry_LogNormSDdivBy4_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy4_hourly", "2126_Murg_2009_dry_LogNormSDdivBy2_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy2_hourly", "2126_Murg_2009_dry_LogNormSDdivBy2_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy2_hourly", "2126_Murg_2009_dry_LogNormSDdivBy2_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy2_hourly", "2126_Murg_2009_dry_LogNormSDdivBy2_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy2_hourly", "2126_Murg_2009_dry_LogNormSDdivBy2_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy2_hourly", "2126_Murg_2009_dry_LogNormSDdivBy1_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy1_hourly", "2126_Murg_2009_dry_LogNormSDdivBy1_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy1_hourly", "2126_Murg_2009_dry_LogNormSDdivBy1_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy1_hourly", "2126_Murg_2009_dry_LogNormSDdivBy1_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy1_hourly", "2126_Murg_2009_dry_LogNormSDdivBy1_hourly",
"2126_Murg_2009_dry_LogNormSDdivBy1_hourly", "2126_Murg_2009_dry_random_hourly",
"2126_Murg_2009_dry_random_hourly", "2126_Murg_2009_dry_random_hourly",
"2126_Murg_2009_dry_random_hourly", "2126_Murg_2009_dry_random_hourly",
"2126_Murg_2009_dry_random_hourly", "2126_Murg_2009_dry_random_hourly",
"2126_Murg_2009_dry_random_hourly", "2126_Murg_2009_dry_random_hourly",
"2126_Murg_2009_dry_random_hourly", "2126_Murg_2009_dry_bench_weekly",
"2126_Murg_2009_dry_bench_weekly", "2126_Murg_2009_dry_bench_weekly",
"2126_Murg_2009_dry_bench_weekly", "2126_Murg_2009_dry_bench_weekly",
"2126_Murg_2009_dry_bench_weekly", "2126_Murg_2009_dry_bench_weekly",
"2126_Murg_2009_dry_bench_weekly", "2126_Murg_2009_dry_bench_weekly",
"2126_Murg_2009_dry_bench_weekly", "2126_Murg_2009_dry_LogNormSDdivBy4_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy4_weekly", "2126_Murg_2009_dry_LogNormSDdivBy4_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy4_weekly", "2126_Murg_2009_dry_LogNormSDdivBy4_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy4_weekly", "2126_Murg_2009_dry_LogNormSDdivBy4_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy4_weekly", "2126_Murg_2009_dry_LogNormSDdivBy4_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy4_weekly", "2126_Murg_2009_dry_LogNormSDdivBy2_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy2_weekly", "2126_Murg_2009_dry_LogNormSDdivBy2_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy2_weekly", "2126_Murg_2009_dry_LogNormSDdivBy2_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy2_weekly", "2126_Murg_2009_dry_LogNormSDdivBy2_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy2_weekly", "2126_Murg_2009_dry_LogNormSDdivBy2_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy2_weekly", "2126_Murg_2009_dry_LogNormSDdivBy1_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy1_weekly", "2126_Murg_2009_dry_LogNormSDdivBy1_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy1_weekly", "2126_Murg_2009_dry_LogNormSDdivBy1_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy1_weekly", "2126_Murg_2009_dry_LogNormSDdivBy1_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy1_weekly", "2126_Murg_2009_dry_LogNormSDdivBy1_weekly",
"2126_Murg_2009_dry_LogNormSDdivBy1_weekly"), NoiseType = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("bench", "LogNormSDdivBy1",
"LogNormSDdivBy2", "LogNormSDdivBy4", "random"), class = "factor"),
TempRes = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L), .Label = c("hourly", "weekly"), class = "factor"),
yearChar = c("dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry", "dry",
"dry", "dry"), Parameterset = c(1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), Reff = c(0.6626,
0.6959, 0.7128, 0.6351, 0.7056, 0.6755, 0.655, 0.7155, 0.6839,
0.6564, 0.543, 0.5652, 0.5405, 0.5698, 0.5395, 0.5548, 0.5652,
0.5699, 0.5892, 0.578, 0.5366, 0.5052, 0.5389, 0.5194, 0.5555,
0.5529, 0.5315, 0.5092, 0.5137, 0.5417, 0.6635, 0.6427, 0.6561,
0.6702, 0.7035, 0.6789, 0.6631, 0.6544, 0.6432, 0.6384, 0.2273,
0.1757, -0.0048, 0.1647, 0.2586, 0.2926, 0.0739, 0.2607,
0.0799, 0.3595, 0.6679, 0.6712, 0.6557, 0.6906, 0.6777, 0.6748,
0.6531, 0.6779, 0.6708, 0.6446, 0.6227, 0.6404, 0.6474, 0.6221,
0.6089, 0.6159, 0.6194, 0.6382, 0.6323, 0.6198, 0.4703, 0.5456,
0.5883, 0.5114, 0.5188, 0.6257, 0.6036, 0.4501, 0.5154, 0.6,
0.2172, 0.245, 0.3625, 0.2793, 0.4073, 0.3257, 0.3435, 0.4297,
0.4375, 0.3451), LogReff = c(0.6498, 0.6665, 0.684, 0.6078,
0.6845, 0.6375, 0.6325, 0.6871, 0.6661, 0.6396, 0.5571, 0.5735,
0.5398, 0.5763, 0.5389, 0.5612, 0.5657, 0.578, 0.5999, 0.5881,
0.5806, 0.5445, 0.5782, 0.5724, 0.5832, 0.6113, 0.5763, 0.5439,
0.5626, 0.5757, 0.6855, 0.6787, 0.7003, 0.6393, 0.6684, 0.6924,
0.6897, 0.6956, 0.6408, 0.6801, 0.2823, -0.6217, -0.5084,
0.1936, 0.2246, 0.5335, 0.0143, 0.3124, -1.2437, -1.2655,
0.7041, 0.6973, 0.6834, 0.7032, 0.7116, 0.7042, 0.6811, 0.7148,
0.693, 0.6994, 0.6543, 0.6724, 0.6962, 0.657, 0.6783, 0.6621,
0.655, 0.6763, 0.6668, 0.6557, 0.6393, 0.6671, 0.726, 0.6832,
0.6848, 0.725, 0.7171, 0.6249, 0.6998, 0.7267, 0.3785, 0.4655,
0.5272, 0.5249, 0.5853, 0.4842, 0.4172, 0.6045, 0.5857, 0.5238
), VolumeError = c(0.9267, 0.931, 0.9401, 0.9225, 0.9507,
0.923, 0.9243, 0.9536, 0.9312, 0.9285, 0.8689, 0.8718, 0.8716,
0.8716, 0.8683, 0.8658, 0.8691, 0.8703, 0.8764, 0.8745, 0.8786,
0.8773, 0.8875, 0.8924, 0.8837, 0.8862, 0.8865, 0.8779, 0.8792,
0.8901, 0.8119, 0.8109, 0.8412, 0.8254, 0.8271, 0.8509, 0.8161,
0.8259, 0.8386, 0.8263, 0.8507, 0.5669, 0.4859, 0.6478, 0.6046,
0.85, 0.9425, 0.9153, 0.5295, 0.6555, 0.9777, 0.994, 0.9915,
0.9899, 0.9738, 0.9833, 0.9694, 0.9981, 0.9964, 0.9818, 0.997,
0.9822, 0.9954, 0.9996, 0.9768, 0.9644, 0.9974, 0.9962, 0.998,
0.9995, 0.9962, 0.9684, 0.99, 0.9625, 0.9595, 0.9853, 0.9783,
0.9227, 0.9661, 0.9783, 0.7664, 0.8786, 0.7615, 0.799, 0.7369,
0.7722, 0.8399, 0.7354, 0.771, 0.7745), MAREMeasure = c(0.532,
0.543, 0.557, 0.497, 0.5581, 0.5176, 0.5166, 0.5621, 0.5447,
0.5234, 0.445, 0.4554, 0.4322, 0.4579, 0.4298, 0.4448, 0.4487,
0.4582, 0.4762, 0.4675, 0.4718, 0.4432, 0.4725, 0.4721, 0.4725,
0.4989, 0.4711, 0.4428, 0.4577, 0.4704, 0.7183, 0.7166, 0.7144,
0.6848, 0.6943, 0.7034, 0.7202, 0.7194, 0.6832, 0.7105, 0.4913,
0.5758, 0.5658, 0.5817, 0.6574, 0.6191, 0.1196, 0.3526, 0.5357,
0.5475, 0.5931, 0.5882, 0.5782, 0.5886, 0.5984, 0.5945, 0.5728,
0.6089, 0.5834, 0.5962, 0.5434, 0.5581, 0.5848, 0.5467, 0.5703,
0.5478, 0.546, 0.5633, 0.555, 0.5458, 0.6243, 0.6468, 0.6736,
0.6175, 0.6219, 0.6604, 0.6769, 0.5766, 0.6301, 0.6793, 0.5227,
0.6047, 0.647, 0.6657, 0.661, 0.6324, 0.5751, 0.6707, 0.6532,
0.6621), POA = c(0.692775, 0.7091, 0.723475, 0.6656, 0.724725,
0.6884, 0.6821, 0.729575, 0.706475, 0.686975, 0.6035, 0.616475,
0.596025, 0.6189, 0.594125, 0.60665, 0.612175, 0.6191, 0.635425,
0.627025, 0.6169, 0.59255, 0.619275, 0.614075, 0.623725,
0.637325, 0.61635, 0.59345, 0.6033, 0.619475, 0.7198, 0.712225,
0.728, 0.704925, 0.723325, 0.7314, 0.722275, 0.723825, 0.70145,
0.713825, 0.4629, 0.174175, 0.134625, 0.39695, 0.4363, 0.5738,
0.287575, 0.46025, -0.02465, 0.07425, 0.7357, 0.737675, 0.7272,
0.743075, 0.740375, 0.7392, 0.7191, 0.749925, 0.7359, 0.7305,
0.70435, 0.713275, 0.73095, 0.70635, 0.708575, 0.69755, 0.70445,
0.7185, 0.713025, 0.7052, 0.682525, 0.706975, 0.744475, 0.69365,
0.69625, 0.7491, 0.743975, 0.643575, 0.70285, 0.746075, 0.4712,
0.54845, 0.57455, 0.567225, 0.597625, 0.553625, 0.543925,
0.610075, 0.61185, 0.576375)), .Names = c("CatchmentModelType",
"NoiseType", "TempRes", "yearChar", "Parameterset", "Reff", "LogReff",
"VolumeError", "MAREMeasure", "POA"), row.names = c(1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 1501L, 1502L, 1503L, 1504L, 1505L,
1506L, 1507L, 1508L, 1509L, 1510L, 1001L, 1002L, 1003L, 1004L,
1005L, 1006L, 1007L, 1008L, 1009L, 1010L, 501L, 502L, 503L, 504L,
505L, 506L, 507L, 508L, 509L, 510L, 36001L, 36002L, 36003L, 36004L,
36005L, 36006L, 36007L, 36008L, 36009L, 36010L, 401L, 402L, 403L,
404L, 405L, 406L, 407L, 408L, 409L, 410L, 1901L, 1902L, 1903L,
1904L, 1905L, 1906L, 1907L, 1908L, 1909L, 1910L, 1401L, 1402L,
1403L, 1404L, 1405L, 1406L, 1407L, 1408L, 1409L, 1410L, 901L,
902L, 903L, 904L, 905L, 906L, 907L, 908L, 909L, 910L), class = "data.frame")
The second solution here can be modified to suit your case:
Step 1. Add fake data to dataset using
complete
from the tidyr package:Step 2. Plot, but setting y-axis limits within
coord_cartesian
:Reason for this is that setting the limits using the
ylim()
command would have caused the empty boxplot space for weekly random noise type to disappear. The help file forylim
states:While the help file for
coord_cartesian
states:Alternative solution
This will keep all boxes at the same width, regardless whether there were different number of factor levels associated with each category along the x-axis. It achieves this by flattening the hierarchical nature of the "x variable"~"fill factor variable" relationship, so that each combination of "x variable"~"fill factor variable" is given equal weight (& hence width) in the boxplot.
Step 1. Define the position of each boxplot along the x-axis, taking x-axis as numeric rather than categorical:
Step 2. Plot, labeling the numeric x-axis with categorical labels:
Note: Personally, I wouldn't recommend this solution. It's difficult to automate / generalize as it requires different manual adjustments depending on the number of fill variable levels present. But if you really need this for a one-off use case, it's here.
Starting in ggplot2 3.0.0 there is a
preserve
argument inposition_dodge()
that allows the width of a single element to be preserved. There is also a second dodging function,position_dodge2()
, which changes how elements are spread over the plotting area with overlap.If you want to have all boxes the same width with the single box centered on its x tick, you can use
preserve = "single"
inposition_dodge2()
.If you want to have all boxes the same width and mirror the dodging for the single element group with the other groups you can add
preserve = "single"
toposition_dodge()
.