- What is pivot?
- How do I pivot?
- Is this a pivot?
- Long format to wide format?
I've seen a lot of questions that ask about pivot tables. Even if they don't know that they are asking about pivot tables, they usually are. It is virtually impossible to write a canonical question and answer that encompasses all aspects of pivoting....
... But I'm going to give it a go.
The problem with existing questions and answers is that often the question is focused on a nuance that the OP has trouble generalizing in order to use a number of the existing good answers. However, none of the answers attempt to give a comprehensive explanation (because it's a daunting task)
Look a few examples from my google search
- How to pivot a dataframe in Pandas?
- Good question and answer. But the answer only answers the specific question with little explanation.
- pandas pivot table to data frame
- In this question, the OP is concerned with the output of the pivot. Namely how the columns look. OP wanted it to look like R. This isn't very helpful for pandas users.
- pandas pivoting a dataframe, duplicate rows
- Another decent question but the answer focuses on one method, namely
pd.DataFrame.pivot
- Another decent question but the answer focuses on one method, namely
So whenever someone searches for pivot
they get sporadic results that are likely not going to answer their specific question.
Setup
You may notice that I conspicuously named my columns and relevant column values to correspond with how I'm going to pivot in the answers below. Pay attention so that you get familiar with where which column names go where to get the results you're looking for.
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
Question(s)
Why do I get
ValueError: Index contains duplicate entries, cannot reshape
How do I pivot
df
such that thecol
values are columns,row
values are the index, and mean ofval0
are the values?col col0 col1 col2 col3 col4 row row0 0.77 0.605 NaN 0.860 0.65 row2 0.13 NaN 0.395 0.500 0.25 row3 NaN 0.310 NaN 0.545 NaN row4 NaN 0.100 0.395 0.760 0.24
How do I pivot
df
such that thecol
values are columns,row
values are the index, mean ofval0
are the values, and missing values are0
?col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
Can I get something other than
mean
, like maybesum
?col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24
Can I do more that one aggregation at a time?
sum mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
Can I aggregate over multiple value columns?
val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
Can Subdivide by multiple columns?
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
Or
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
Can I aggregate the frequency in which the column and rows occur together, aka "cross tabulation"?
col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
How do I convert a DataFrame from long to wide by pivoting on ONLY two columns? Given,
np.random.seed([3, 1415]) df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)}) df2 A B 0 a 0 1 a 11 2 a 2 3 a 11 4 b 10 5 b 10 6 b 14 7 c 7
The expected should would look something like
a b c 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN
How do I flatten the multiple index to single index after
pivot
From
1 2 1 1 2 a 2 1 1 b 2 1 0 c 1 0 0
To
1|1 2|1 2|2 a 2 1 1 b 2 1 0 c 1 0 0
We start by answering the first question:
Question 1
This occurs because pandas is attempting to reindex either a
columns
orindex
object with duplicate entries. There are varying methods to use that can perform a pivot. Some of them are not well suited to when there are duplicates of the keys in which it is being asked to pivot on. For example. Considerpd.DataFrame.pivot
. I know there are duplicate entries that share therow
andcol
values:So when I
pivot
usingI get the error mentioned above. In fact, I get the same error when I try to perform the same task with:
Here is a list of idioms we can use to pivot
pd.DataFrame.groupby
+pd.DataFrame.unstack
unstack
the levels that you want to be in the column index.pd.DataFrame.pivot_table
groupby
with more intuitive API. For many people, this is the preferred approach. And is the intended approach by the developers.pd.DataFrame.set_index
+pd.DataFrame.unstack
groupby
paradigm, we specify all columns that will eventually be either row or column levels and set those to be the index. We thenunstack
the levels we want in the columns. If either the remaining index levels or column levels are not unique, this method will fail.pd.DataFrame.pivot
set_index
in that it shares the duplicate key limitation. The API is very limited as well. It only takes scalar values forindex
,columns
,values
.pivot_table
method in that we select rows, columns, and values on which to pivot. However, we cannot aggregate and if either rows or columns are not unique, this method will fail.pd.crosstab
pivot_table
and in it's purest form is the most intuitive way to perform several tasks.pd.factorize
+np.bincount
pd.get_dummies
+pd.DataFrame.dot
Examples
What I'm going to do for each subsequent answer and question is to answer it using
pd.DataFrame.pivot_table
. Then I'll provide alternatives to perform the same task.Question 3
pd.DataFrame.pivot_table
fill_value
is not set by default. I tend to set it appropriately. In this case I set it to0
. Notice I skipped question 2 as it's the same as this answer without thefill_value
aggfunc='mean'
is the default and I didn't have to set it. I included it to be explicit.pd.DataFrame.groupby
pd.crosstab
Question 4
pd.DataFrame.pivot_table
pd.DataFrame.groupby
pd.crosstab
Question 5
Notice that for
pivot_table
andcross_tab
I needed to pass list of callables. On the other hand,groupby.agg
is able to take strings for a limited number of special functions.groupby.agg
would also have taken the same callables we passed to the others, but it is often more efficient to leverage the string function names as there are efficiencies to be gained.pd.DataFrame.pivot_table
pd.DataFrame.groupby
pd.crosstab
Question 6
pd.DataFrame.pivot_table
we passvalues=['val0', 'val1']
but we could've left that off completelypd.DataFrame.groupby
Question 7
pd.DataFrame.pivot_table
pd.DataFrame.groupby
Question 8
pd.DataFrame.pivot_table
pd.DataFrame.groupby
pd.DataFrame.set_index
because the set of keys are unique for both rows and columnsQuestion 9
pd.DataFrame.pivot_table
pd.DataFrame.groupby
pd.cross_tab
pd.factorize
+np.bincount
pd.get_dummies
Question 10
The first step is to assign a number to each row - this number will be the row index of that value in the pivoted result. This is done using
GroupBy.cumcount
:Question 11
If
columns
typeobject
with stringjoin
else
format