I have an array of 35000 images of 256x256 grayscale images
print(len(data))
>>>35000
print(data[0].shape)
>>>(256, 256)
My first layer is
model.add(Conv2D(64, (3, 3), input_shape=(35000,), activation='relu'))
and it gives me the error
>>>ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=2
what I'm doing wrong? what is the proper way to define the input shape?
Convolutional layers input shape:
(images, height, width, channels)
So: