I've implemented Xiaolin Wu algorithm to draw an antialiased circle. And it works. However, in my app, I can draw on the screen many circles and they don't have full opacity. So, I want to blend them. Before implementing antialiasing Xiaolin Wu algorithm my blending method worked. I use very simple blending:
int blendColors(int a, int b, float t) {
double s = sqrt((1 - t) * a * a + t * b * b);
return s;
}
void setPixel(int index, int r, int g, int b, int a, unsigned char* data) {
int oldR = data[index];
int oldG = data[index + 1];
int oldB = data[index + 2];
int oldA = data[index + 3];
int newA = min((int) (oldA + a * 0.25f), 255);
int newR = blendColors(oldR, r, 0.5f);
int newG = blendColors(oldG, g, 0.5f);
int newB = blendColors(oldB, b, 0.5f);
data[index] = newR;
data[index + 1] = newG;
data[index + 2] = newB;
data[index + 3] = newA;
}
Alpha blending works like darkening.
Now, if I start from transparent background it looks like this:
But, when I start from opaque background is looks like this:
As you can see antialiasing is missing. That's because opaque background already have 255 opacity. So there's an issue in blending algorithm. I have to find another way to blend colours when there's an opaque background. How can I do this?
Circle algorithm is here:
void drawFilledCircle(int x, int y, int startRadius, int endRadius, int r, int g, int b, int a, unsigned char* data, unsigned char* areasData, int startAngle, int endAngle, bool blendColor) {
assert(startAngle <= endAngle);
assert(startRadius <= endRadius);
dfBufferCounter = 0;
for(int i = 0; i < DRAW_FILLED_CIRCLE_BUFFER_SIZE; i++) {
drawFilledCircleBuffer[i] = -1;
}
for(int cradius = endRadius; cradius >= startRadius; cradius--) {
bool last = cradius == endRadius;
bool first = cradius == startRadius && cradius != 0;
float radiusX = cradius;
float radiusY = cradius;
float radiusX2 = radiusX * radiusX;
float radiusY2 = radiusY * radiusY;
float maxTransparency = 127;
float quarter = roundf(radiusX2 / sqrtf(radiusX2 + radiusY2));
for(float _x = 0; _x <= quarter; _x++) {
float _y = radiusY * sqrtf(1 - _x * _x / radiusX2);
float error = _y - floorf(_y);
float transparency = roundf(error * maxTransparency);
int alpha = last ? transparency : maxTransparency;
int alpha2 = first ? maxTransparency - transparency : maxTransparency;
setPixel4(x, y, _x, floorf(_y), r, g, b, alpha, cradius, endRadius, data, areasData, blendColor);
setPixel4(x, y, _x, floorf(_y) - 1, r, g, b, alpha2, cradius, endRadius, data, areasData, blendColor);
}
quarter = roundf(radiusY2 / sqrtf(radiusX2 + radiusY2));
for(float _y = 0; _y <= quarter; _y++) {
float _x = radiusX * sqrtf(1 - _y * _y / radiusY2);
float error = _x - floorf(_x);
float transparency = roundf(error * maxTransparency);
int alpha = last ? transparency : maxTransparency;
int alpha2 = first ? maxTransparency - transparency : maxTransparency;
setPixel4(x, y, floorf(_x), _y, r, g, b, alpha, cradius, endRadius, data, areasData, blendColor);
setPixel4(x, y, floorf(_x) - 1, _y, r, g, b, alpha2, cradius, endRadius, data, areasData, blendColor);
}
}
}
void setPixel4(int x, int y, int deltaX, int deltaY, int r, int g, int b, int a, int radius, int maxRadius, unsigned char* data, unsigned char* areasData, bool blendColor) {
for(int j = 0; j < 4; j++) {
int px, py;
if(j == 0) {
px = x + deltaX;
py = y + deltaY;
} else if(j == 1) {
px = x - deltaX;
py = y + deltaY;
} else if(j == 2) {
px = x + deltaX;
py = y - deltaY;
} else if(j == 3) {
px = x - deltaX;
py = y - deltaY;
}
int index = (px + (img->getHeight() - py - 1) * img->getWidth()) * 4;
bool alreadyInBuffer = false;
for(int i = 0; i < dfBufferCounter; i++) {
if(i >= DRAW_FILLED_CIRCLE_BUFFER_SIZE) break;
if(drawFilledCircleBuffer[i] == index) {
alreadyInBuffer = true;
break;
}
}
if(!alreadyInBuffer) {
if(dfBufferCounter < DRAW_FILLED_CIRCLE_BUFFER_SIZE) {
drawFilledCircleBuffer[dfBufferCounter++] = index;
}
setPixelWithCheckingArea(px, py, r, g, b, a, data, areasData, blendColor);
}
}
}
Firstly, alpha blending is linear, so
blendColors
is incorrect.When blending a pixel you must also take into account the alpha channel of the overlay colour.
Assume that the
(RGB, A)
value for the following are:(b, 255)
(i.e. opaque)(c, a)
(d, 255)
The blending equation is
d = [ c * a + b * (255 - a) ] / 255
.Code:
In the case of non-opaque backgrounds, the blending equation is somewhat more complex; in particular, simply using the minimum alpha when blending is incorrect.
(See my answer here for a derivation.)
Code: