Select N random elements from a List in C#

2019-01-01 01:54发布

I need a quick algorithm to select 5 random elements from a generic list. For example, I'd like to get 5 random elements from a List<string>.

27条回答
初与友歌
2楼-- · 2019-01-01 02:31

Was thinking about comment by @JohnShedletsky on the accepted answer regarding (paraphrase):

you should be able to to this in O(subset.Length), rather than O(originalList.Length)

Basically, you should be able to generate subset random indices and then pluck them from the original list.

The Method

public static class EnumerableExtensions {

    public static Random randomizer = new Random(); // you'd ideally be able to replace this with whatever makes you comfortable

    public static IEnumerable<T> GetRandom<T>(this IEnumerable<T> list, int numItems) {
        return (list as T[] ?? list.ToArray()).GetRandom(numItems);

        // because ReSharper whined about duplicate enumeration...
        /*
        items.Add(list.ElementAt(randomizer.Next(list.Count()))) ) numItems--;
        */
    }

    // just because the parentheses were getting confusing
    public static IEnumerable<T> GetRandom<T>(this T[] list, int numItems) {
        var items = new HashSet<T>(); // don't want to add the same item twice; otherwise use a list
        while (numItems > 0 )
            // if we successfully added it, move on
            if( items.Add(list[randomizer.Next(list.Length)]) ) numItems--;

        return items;
    }

    // and because it's really fun; note -- you may get repetition
    public static IEnumerable<T> PluckRandomly<T>(this IEnumerable<T> list) {
        while( true )
            yield return list.ElementAt(randomizer.Next(list.Count()));
    }

}

If you wanted to be even more efficient, you would probably use a HashSet of the indices, not the actual list elements (in case you've got complex types or expensive comparisons);

The Unit Test

And to make sure we don't have any collisions, etc.

[TestClass]
public class RandomizingTests : UnitTestBase {
    [TestMethod]
    public void GetRandomFromList() {
        this.testGetRandomFromList((list, num) => list.GetRandom(num));
    }

    [TestMethod]
    public void PluckRandomly() {
        this.testGetRandomFromList((list, num) => list.PluckRandomly().Take(num), requireDistinct:false);
    }

    private void testGetRandomFromList(Func<IEnumerable<int>, int, IEnumerable<int>> methodToGetRandomItems, int numToTake = 10, int repetitions = 100000, bool requireDistinct = true) {
        var items = Enumerable.Range(0, 100);
        IEnumerable<int> randomItems = null;

        while( repetitions-- > 0 ) {
            randomItems = methodToGetRandomItems(items, numToTake);
            Assert.AreEqual(numToTake, randomItems.Count(),
                            "Did not get expected number of items {0}; failed at {1} repetition--", numToTake, repetitions);
            if(requireDistinct) Assert.AreEqual(numToTake, randomItems.Distinct().Count(),
                            "Collisions (non-unique values) found, failed at {0} repetition--", repetitions);
            Assert.IsTrue(randomItems.All(o => items.Contains(o)),
                        "Some unknown values found; failed at {0} repetition--", repetitions);
        }
    }
}
查看更多
皆成旧梦
3楼-- · 2019-01-01 02:32

I combined several of the above answers to create a Lazily-evaluated extension method. My testing showed that Kyle's approach (Order(N)) is many times slower than drzaus' use of a set to propose the random indices to choose (Order(K)). The former performs many more calls to the random number generator, plus iterates more times over the items.

The goals of my implementation were:

1) Do not realize the full list if given an IEnumerable that is not an IList. If I am given a sequence of a zillion items, I do not want to run out of memory. Use Kyle's approach for an on-line solution.

2) If I can tell that it is an IList, use drzaus' approach, with a twist. If K is more than half of N, I risk thrashing as I choose many random indices again and again and have to skip them. Thus I compose a list of the indices to NOT keep.

3) I guarantee that the items will be returned in the same order that they were encountered. Kyle's algorithm required no alteration. drzaus' algorithm required that I not emit items in the order that the random indices are chosen. I gather all the indices into a SortedSet, then emit items in sorted index order.

4) If K is large compared to N and I invert the sense of the set, then I enumerate all items and test if the index is not in the set. This means that I lose the Order(K) run time, but since K is close to N in these cases, I do not lose much.

Here is the code:

    /// <summary>
    /// Takes k elements from the next n elements at random, preserving their order.
    /// 
    /// If there are fewer than n elements in items, this may return fewer than k elements.
    /// </summary>
    /// <typeparam name="TElem">Type of element in the items collection.</typeparam>
    /// <param name="items">Items to be randomly selected.</param>
    /// <param name="k">Number of items to pick.</param>
    /// <param name="n">Total number of items to choose from.
    /// If the items collection contains more than this number, the extra members will be skipped.
    /// If the items collection contains fewer than this number, it is possible that fewer than k items will be returned.</param>
    /// <returns>Enumerable over the retained items.
    /// 
    /// See http://stackoverflow.com/questions/48087/select-a-random-n-elements-from-listt-in-c-sharp for the commentary.
    /// </returns>
    public static IEnumerable<TElem> TakeRandom<TElem>(this IEnumerable<TElem> items, int k, int n)
    {
        var r = new FastRandom();
        var itemsList = items as IList<TElem>;

        if (k >= n || (itemsList != null && k >= itemsList.Count))
            foreach (var item in items) yield return item;
        else
        {  
            // If we have a list, we can infer more information and choose a better algorithm.
            // When using an IList, this is about 7 times faster (on one benchmark)!
            if (itemsList != null && k < n/2)
            {
                // Since we have a List, we can use an algorithm suitable for Lists.
                // If there are fewer than n elements, reduce n.
                n = Math.Min(n, itemsList.Count);

                // This algorithm picks K index-values randomly and directly chooses those items to be selected.
                // If k is more than half of n, then we will spend a fair amount of time thrashing, picking
                // indices that we have already picked and having to try again.   
                var invertSet = k >= n/2;  
                var positions = invertSet ? (ISet<int>) new HashSet<int>() : (ISet<int>) new SortedSet<int>();

                var numbersNeeded = invertSet ? n - k : k;
                while (numbersNeeded > 0)
                    if (positions.Add(r.Next(0, n))) numbersNeeded--;

                if (invertSet)
                {
                    // positions contains all the indices of elements to Skip.
                    for (var itemIndex = 0; itemIndex < n; itemIndex++)
                    {
                        if (!positions.Contains(itemIndex))
                            yield return itemsList[itemIndex];
                    }
                }
                else
                {
                    // positions contains all the indices of elements to Take.
                    foreach (var itemIndex in positions)
                        yield return itemsList[itemIndex];              
                }
            }
            else
            {
                // Since we do not have a list, we will use an online algorithm.
                // This permits is to skip the rest as soon as we have enough items.
                var found = 0;
                var scanned = 0;
                foreach (var item in items)
                {
                    var rand = r.Next(0,n-scanned);
                    if (rand < k - found)
                    {
                        yield return item;
                        found++;
                    }
                    scanned++;
                    if (found >= k || scanned >= n)
                        break;
                }
            }
        }  
    } 

I use a specialized random number generator, but you can just use C#'s Random if you want. (FastRandom was written by Colin Green and is part of SharpNEAT. It has a period of 2^128-1 which is better than many RNGs.)

Here are the unit tests:

[TestClass]
public class TakeRandomTests
{
    /// <summary>
    /// Ensure that when randomly choosing items from an array, all items are chosen with roughly equal probability.
    /// </summary>
    [TestMethod]
    public void TakeRandom_Array_Uniformity()
    {
        const int numTrials = 2000000;
        const int expectedCount = numTrials/20;
        var timesChosen = new int[100];
        var century = new int[100];
        for (var i = 0; i < century.Length; i++)
            century[i] = i;

        for (var trial = 0; trial < numTrials; trial++)
        {
            foreach (var i in century.TakeRandom(5, 100))
                timesChosen[i]++;
        }
        var avg = timesChosen.Average();
        var max = timesChosen.Max();
        var min = timesChosen.Min();
        var allowedDifference = expectedCount/100;
        AssertBetween(avg, expectedCount - 2, expectedCount + 2, "Average");
        //AssertBetween(min, expectedCount - allowedDifference, expectedCount, "Min");
        //AssertBetween(max, expectedCount, expectedCount + allowedDifference, "Max");

        var countInRange = timesChosen.Count(i => i >= expectedCount - allowedDifference && i <= expectedCount + allowedDifference);
        Assert.IsTrue(countInRange >= 90, String.Format("Not enough were in range: {0}", countInRange));
    }

    /// <summary>
    /// Ensure that when randomly choosing items from an IEnumerable that is not an IList, 
    /// all items are chosen with roughly equal probability.
    /// </summary>
    [TestMethod]
    public void TakeRandom_IEnumerable_Uniformity()
    {
        const int numTrials = 2000000;
        const int expectedCount = numTrials / 20;
        var timesChosen = new int[100];

        for (var trial = 0; trial < numTrials; trial++)
        {
            foreach (var i in Range(0,100).TakeRandom(5, 100))
                timesChosen[i]++;
        }
        var avg = timesChosen.Average();
        var max = timesChosen.Max();
        var min = timesChosen.Min();
        var allowedDifference = expectedCount / 100;
        var countInRange =
            timesChosen.Count(i => i >= expectedCount - allowedDifference && i <= expectedCount + allowedDifference);
        Assert.IsTrue(countInRange >= 90, String.Format("Not enough were in range: {0}", countInRange));
    }

    private IEnumerable<int> Range(int low, int count)
    {
        for (var i = low; i < low + count; i++)
            yield return i;
    }

    private static void AssertBetween(int x, int low, int high, String message)
    {
        Assert.IsTrue(x > low, String.Format("Value {0} is less than lower limit of {1}. {2}", x, low, message));
        Assert.IsTrue(x < high, String.Format("Value {0} is more than upper limit of {1}. {2}", x, high, message));
    }

    private static void AssertBetween(double x, double low, double high, String message)
    {
        Assert.IsTrue(x > low, String.Format("Value {0} is less than lower limit of {1}. {2}", x, low, message));
        Assert.IsTrue(x < high, String.Format("Value {0} is more than upper limit of {1}. {2}", x, high, message));
    }
}
查看更多
唯独是你
4楼-- · 2019-01-01 02:33

Extending from @ers's answer, if one is worried about possible different implementations of OrderBy, this should be safe:

// Instead of this
YourList.OrderBy(x => rnd.Next()).Take(5)

// Temporarily transform 
YourList
    .Select(v => new {v, i = rnd.Next()}) // Associate a random index to each entry
    .OrderBy(x => x.i).Take(5) // Sort by (at this point fixed) random index 
    .Select(x => x.v); // Go back to enumerable of entry
查看更多
登录 后发表回答