eigenvectors complex nonsymmetric matrix in R diff

2019-08-18 03:50发布

This question already has an answer here:

I want to compute the eigenvalues of a complex matrix in R. Comparing the values obtained in MATLAB, I don't get the same eigenvalues obtained in R computing it from the exact same matrix.

In R, I used eigen(). In MATLAB used eig() or eigs() (both functions give out the same eigenvalues but different to the R ones).

For real matrices, R and MATLAB are consistent. How to get in R the same result of MATLAB ?

Example in Matlab real matrix:

squeeze(Sigma_X(:,:,h+1)) %real matrix 10x10
ans =

1.0e+03 *

Columns 1 through 6

5.8706    5.9966    6.1225    6.2484    6.3744    6.5003
5.9966    6.1260    6.2554    6.3849    6.5143    6.6438
6.1225    6.2554    6.3884    6.5213    6.6543    6.7872
6.2484    6.3849    6.5213    6.6578    6.7942    6.9306
6.3744    6.5143    6.6543    6.7942    6.9341    7.0741
6.5003    6.6438    6.7872    6.9306    7.0741    7.2175
6.6263    6.7732    6.9201    7.0671    7.2140    7.3609
6.7522    6.9026    7.0531    7.2035    7.3539    7.5044
6.8782    7.0321    7.1860    7.3399    7.4939    7.6478
7.0041    7.1615    7.3190    7.4764    7.6338    7.7912

Columns 7 through 10

6.6263    6.7522    6.8782    7.0041
6.7732    6.9026    7.0321    7.1615
6.9201    7.0531    7.1860    7.3190
7.0671    7.2035    7.3399    7.4764
7.2140    7.3539    7.4939    7.6338
7.3609    7.5044    7.6478    7.7912
7.5079    7.6548    7.8017    7.9487
7.6548    7.8052    7.9557    8.1061
7.8017    7.9557    8.1096    8.2635
7.9487    8.1061    8.2635    8.4210

opt.disp = 0;
[P, D] = eigs(squeeze(Sigma_X(:,:,h+1)),q,'LM',opt) %compute the eigenvalues and eigenvectors

 P =

-0.2872    0.5128
-0.2936    0.4029
-0.2999    0.2930
-0.3062    0.1830
-0.3125    0.0731
-0.3189   -0.0368
-0.3252   -0.1467
-0.3315   -0.2566
-0.3379   -0.3665
-0.3442   -0.4764

D =

1.0e+04 *

7.0984         0
     0    0.0054

Example in R real matrix:

drop(Sigma_X[,,h+1]) #Same real matrix as before, 10x10

Columns 1 through 5

 5870.610+0i 5996.552+0i 6122.495+0i 6248.438+0i 6374.381+0i 
 5996.552+0i 6125.994+0i 6255.435+0i 6384.876+0i 6514.317+0i 
 6122.495+0i 6255.435+0i 6388.375+0i 6521.314+0i 6654.254+0i 
 6248.438+0i 6384.876+0i 6521.314+0i 6657.752+0i 6794.190+0i 
 6374.381+0i 6514.317+0i 6654.254+0i 6794.190+0i 6934.127+0i 
 6500.324+0i 6643.759+0i 6787.194+0i 6930.629+0i 7074.063+0i 
 6626.267+0i 6773.200+0i 6920.133+0i 7067.067+0i 7214.000+0i 
 6752.210+0i 6902.641+0i 7053.073+0i 7203.505+0i 7353.937+0i 
 6878.152+0i 7032.083+0i 7186.013+0i 7339.943+0i 7493.873+0i 
 7004.095+0i 7161.524+0i 7318.952+0i 7476.381+0i 7633.810+0i 

 Columns 6 through 10

 6500.324+0i 6626.267+0i 6752.210+0i 6878.152+0i 7004.095+0i
 6643.759+0i 6773.200+0i 6902.641+0i 7032.083+0i 7161.524+0i
 6787.194+0i 6920.133+0i 7053.073+0i 7186.013+0i 7318.952+0i
 6930.629+0i 7067.067+0i 7203.505+0i 7339.943+0i 7476.381+0i
 7074.063+0i 7214.000+0i 7353.937+0i 7493.873+0i 7633.810+0i
 7217.498+0i 7360.933+0i 7504.368+0i 7647.803+0i 7791.238+0i
 7360.933+0i 7507.867+0i 7654.800+0i 7801.733+0i 7948.667+0i
 7504.368+0i 7654.800+0i 7805.232+0i 7955.663+0i 8106.095+0i
 7647.803+0i 7801.733+0i 7955.663+0i 8109.594+0i 8263.524+0i
 7791.238+0i 7948.667+0i 8106.095+0i 8263.524+0i 8420.952+0i

 Decomp <- eigen(drop(Sigma_X[,,h+1])) #frequency 0
 DD <- diag(Decomp$values[1:q])
 PP <- Decomp$vectors[,1:q] 

 PP

 [1,] -0.2872322+0i  0.5127886+0i
 [2,] -0.2935595+0i  0.4028742+0i
 [3,] -0.2998868+0i  0.2929598+0i
 [4,] -0.3062141+0i  0.1830454+0i
 [5,] -0.3125415+0i  0.0731310+0i
 [6,] -0.3188688+0i -0.0367834+0i
 [7,] -0.3251961+0i -0.1466978+0i
 [8,] -0.3315234+0i -0.2566122+0i
 [9,] -0.3378507+0i -0.3665266+0i
[10,] -0.3441780+0i -0.4764410+0i

 DD

 [1,] 70983.65  0.00000
 [2,]     0.00 54.34878

AS YOU CAN SEE, WHEN THE MATRIX IS REAL, MATLAB AND R GIVE YOU BACK THE SAME EIGENVECTORS AND EIGENVALUES.

LET'S TRY THE SAME CODE BUT WITH A COMPLEX MATRIX.

Example in Matlab complex matrix:

j=1

squeeze(Sigma_X(:,:,j))

ans =

1.0e+02 *

Columns 1 through 5

3.4601+0.0000i 3.5075-0.0304i 3.5548-0.0607i 3.6022-0.0911i 3.6496-0.1215i
3.5075+0.0304i 3.5562+0.0000i 3.6049-0.0304i 3.6535-0.0607i 3.7022-0.0911i
3.5548+0.0607i 3.6049+0.0304i 3.6549+0.0000i 3.7049-0.0304i 3.7549- 0.0607i
3.6022+0.0911i 3.6535+0.0607i 3.7049+0.0304i 3.7562+0.0000i 3.8075- 0.0304i
3.6496+0.1215i 3.7022+0.0911i 3.7549+0.0607i 3.8075+0.0304i 3.8602+ 0.0000i
3.6970+0.1518i 3.7509+0.1215i 3.8049+0.0911i 3.8588+0.0607i 3.9128+ 0.0304i
3.7444+0.1822i 3.7996+0.1518i 3.8549+0.1215i 3.9102+0.0911i 3.9654+ 0.0607i
3.7917+0.2126i  3.8483+0.1822i 3.9049+0.1518i 3.9615+0.1215i 4.0181+ 0.0911i
3.8391+0.2429i 3.8970+0.2126i 3.9549+0.1822i 4.0128+0.1518i 4.0707+ 0.1215i
3.8865+0.2733i 3.9457+0.2429i 4.0049+0.2126i 4.0641+0.1822i 4.1234+ 0.1518i

Columns 6 through 10

3.6970-0.1518i 3.7444-0.1822i 3.7917-0.2126i 3.8391-0.2429i 3.8865- 0.2733i
3.7509-0.1215i 3.7996-0.1518i 3.8483-0.1822i 3.8970-0.2126i 3.9457- 0.2429i
3.8049-0.0911i 3.8549-0.1215i 3.9049-0.1518i 3.9549-0.1822i 4.0049- 0.2126i
3.8588-0.0607i 3.9102-0.0911i 3.9615-0.1215i 4.0128-0.1518i 4.0641- 0.1822i
3.9128-0.0304i 3.9654-0.0607i 4.0181-0.0911i 4.0707-0.1215i 4.1234- 0.1518i
3.9668+0.0000i 4.0207-0.0304i 4.0747-0.0607i 4.1286-0.0911i 4.1826- 0.1215i
4.0207+0.0304i 4.0760+0.0000i 4.1313-0.0304i 4.1865-0.0607i 4.2418- 0.0911i
4.0747+0.0607i 4.1313+0.0304i 4.1878+0.0000i 4.2444-0.0304i 4.3010- 0.0607i
4.1286+0.0911i 4.1865+0.0607i 4.2444+0.0304i 4.3023+0.0000i 4.3602- 0.0304i
4.1826+0.1215i 4.2418+0.0911i 4.3010+0.0607i 4.3602+0.0304i 4.4195+ 0.0000i

[P, D] = eigs(squeeze(Sigma_X(:,:,j)),q,'LM',opt);


P =

 -0.1206 - 0.2711i     0.0471 + 0.5052i
 -0.1199 - 0.2760i     0.0384 + 0.3955i
 -0.1192 - 0.2810i     0.0297 + 0.2859i
 -0.1186 - 0.2859i     0.0210 + 0.1762i
 -0.1179 - 0.2908i     0.0124 + 0.0666i
 -0.1172 - 0.2957i     0.0037 - 0.0430i
 -0.1165 - 0.3006i    -0.0050 - 0.1527i
 -0.1159 - 0.3055i    -0.0137 - 0.2623i
 -0.1152 - 0.3104i    -0.0224 - 0.3720i
 -0.1145 - 0.3153i    -0.0311 - 0.4816i
D =

  1.0e+03 *

  3.9211 + 0.0000i   0.0000 + 0.0000i
  0.0000 + 0.0000i   0.0029 - 0.0000i

Example in R complex matrix:

j=1
drop(Sigma_X[,,j])

Columns 1 through 4

346.0094+0.0000i  350.7470-3.0368i  355.4846-6.0736i  360.2222-9.1104i 
350.7470+3.0368i  355.6162+0.0000i  360.4854-3.0368i  365.3546-6.0736i 
355.4846+6.0736i  360.4854+3.0368i  365.4862+0.0000i  370.4870-3.0368i 
360.2222+9.1104i  365.3546+6.0736i  370.4870+3.0368i  375.6194+0.0000i 
364.9598+12.1472i 370.2238+9.1104i  375.4878+6.0736i  380.7518+3.0368i 
369.6974+15.1839i 375.0930+12.1472i 380.4886+9.1104i  385.8842+6.0736i 
374.4350+18.2207i 379.9622+15.1839i 385.4894+12.1472i 391.0166+9.1104i 
379.1726+21.2575i 384.8314+18.2207i 390.4902+15.1839i 396.1490+12.1472i 
383.9102+24.2943i 389.7006+21.2575i 395.4910+18.2207i 401.2814+15.1839i 
388.6478+27.3311i 394.5698+24.2943i 400.4918+21.2575i 406.4138+18.2207i 

Columns 5 through 7

 364.9598-12.1472i 369.6974-15.1839i 374.4350-18.2207i
 370.2238-9.1104i  375.0930-12.1472i 379.9622-15.1839i
 375.4878-6.0736i  380.4886-9.1104i  385.4894-12.1472i
 380.7518-3.0368i  385.8842-6.0736i  391.0166-9.1104i
 386.0158+ 0.0000i 391.2798- 3.0368i 396.5438- 6.0736i 
 391.2798+ 3.0368i 396.6754+ 0.0000i 402.0710- 3.0368i
 396.5438+ 6.0736i 402.0710+ 3.0368i 407.5982+ 0.0000i         
 401.8078+ 9.1104i 407.4666+ 6.0736i 413.1254+ 3.0368i
 407.0718+12.1472i 412.8622+ 9.1104i 418.6526+ 6.0736i
 412.3358+15.1839i 418.2578+12.1472i 424.1798+ 9.1104i

Columns 8 through 10

  379.1726-21.2575i 383.9102-24.2943i 388.6478-27.3311i
  384.8314-18.2207i 389.7006-21.2575i 394.5698-24.2943i
  390.4902-15.1839i 395.4910-18.2207i 400.4918-21.2575i
  396.1490-12.1472i 401.2814-15.1839i 406.4138-18.2207i
  401.8078- 9.1104i 407.0718-12.1472i 412.3358-15.1839i
  407.4666- 6.0736i 412.8622- 9.1104i 418.2578-12.1472i
  413.1254- 3.0368i 418.6526- 6.0736i 424.1798- 9.1104i
  418.7842+ 0.0000i 424.4430- 3.0368i 430.1018- 6.0736i
  424.4430+ 3.0368i 430.2334+ 0.0000i 436.0237- 3.0368i
  430.1018+ 6.0736i 436.0237+ 3.0368i 441.9457+ 0.0000i

As you can see, the matrix is the same as those computed before in Matlab. Let's compute eigenvalues and eigenvectors.

PP

[1,] -0.2967359+0.0000000i  0.50734838+0.00000000i
[2,] -0.3009476-0.0026119i  0.39737421-0.00152766i
[3,] -0.3051593-0.0052239i  0.28740004-0.00305533i
[4,] -0.3093709-0.0078358i  0.17742587-0.00458299i
[5,] -0.3135826-0.0104478i  0.06745170-0.00611065i
[6,] -0.3177943-0.0130597i -0.04252247-0.00763831i
[7,] -0.3220060-0.0156717i -0.15249664-0.00916598i
[8,] -0.3262177-0.0182836i -0.26247080-0.01069364i
[9,] -0.3304294-0.0208955i -0.37244497-0.01222130i
[10,] -0.3346411-0.0235075i -0.48241914-0.01374896i


DD

 3921.066 0.000000
    0.000 2.917833

As you can see, the eigenvalues are the same as those computed with MATLAB, but the eigenvectors are different. How can I get the same eigenvectors as those of MATLAB?

1条回答
来,给爷笑一个
2楼-- · 2019-08-18 04:18

The answer is simple but difficult to see because the vectors are complex. If you enter both your matrices in MATLAB, and do this

 P(:,1)./PP(:,1)

 ans =
0.4064 + 0.9136i
0.4063 + 0.9136i
0.4063 + 0.9139i
0.4065 + 0.9138i
0.4064 + 0.9138i
0.4063 + 0.9138i
0.4063 + 0.9138i
0.4065 + 0.9137i
0.4064 + 0.9137i
0.4063 + 0.9137i

you see that they are linearly dependent, same for the other one.

I am afraid, that there is no way that I know of, that guarantees you the same result within both programs. Computing eigenvalues and vectors in general is not easy, and slight differences in implementation result in the differences that you see.

To get the same result you could try normalizing the vectors with their first component, meaning

P(:,1)/P(1,1)   and  PP(:,1)/PP(1,1) 

That gives me the same vectors, modulo small differences, as you provide a different number of digits for your examples.

Edit: Another test shows, that this is indeed what Matlab does, in addition to normalizing the length to 1. So

tmp=P(:,1)/P(1,1);
tmp/norm(tmp)

returns the same vector as your Matlab Example.

查看更多
登录 后发表回答