I have a large data set with which I'm undertaking many regression analyses. I'm using a reduced major axis regression with r's lmodel2
package. What I need to do is extract the regression coefficients (r-squared, p-values, slope and intercept) from the RMA models. I can do this easily enough with the OLS regressions using:
RSQ<-summary(model)$r.squared
PVAL<-summary(model)$coefficients[2,4]
INT<-summary(model)$coefficients[1,1]
SLOPE<-summary(model)$coefficients[2,1]
And then export them in a .csv
export<-data.frame(RSQ,PVAL,INT,SLOPE)
write.csv(export, file="FILE_NAME.csv",row.names=F)
These commands don't seem to work for the lmodel2
regressions. Does anybody know how to do it?
Here is a small sample of the data:
x y
0.440895993 227.7
0.294277869 296.85
0.171754892 298.05
0 427.65
0.210884179 215.55
0.053238011 293.7
0.105395366 127.9
0.463933834 229.5
0 165.45
0.482128605 192.15
0.247341039 266.9
0 349.35
0.198833301 185.05
0.170786027 203.85
0.269818315 207.05
0.129543682 222.75
0.441665334 251.35
0 262.8
0.517974685 107.05
0.446336968 191.6
And the model II regression code I'm using
library(lmodel2)
data<-sample_data
mod_2<-lmodel2(y~x,data=data,"interval","interval",99)
mod_2
What about this?
Take a brief look at the
summary()
, which is informative of how the model statistics is saved. (Also you may want to trystr()
).As can be seen the variable names of the GOFs (you called them 'commands') are specific to the package. You can select by adding them to the object name of your model after a
$
operator.For the coefficients and their statistics
lmodel2
wants$regression.results
.