I'm resizing an image using skimage.transform.resize
but I'm getting a really weird output and I can't figure out why. Can anyone help?
Here is my code:
import matplotlib.pyplot as plt
import skimage.transform
plt.imshow(y)
h,w,c = y.shape
x = skimage.transform.resize(y, (256, (w*256)/h), preserve_range=True)
plt.imshow(x)
Here is my input image y (240, 320, 3):
Here is my output image x (256, 341, 3):
Edit:
Okay it seems to work fine if I change preserve_range=False
. But why won't it allow me to keep the current range?
Edit:
I'm randomly sampling frames from videos using OpenCV. Here's the function that returns a frame from the video path I pass to it.
def read_random_frames(vid_file):
vid = cv2.VideoCapture(vid_file)
# get the number of frames
num_frames = vid.get(cv2.CAP_PROP_FRAME_COUNT)
# randomly select frame
p_frame = random.randint(0, (num_frames-1))
# get frame
vid.set(cv2.CAP_PROP_POS_FRAMES, p_frame)
ret, frame = vid.read()
# convert from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame
I have a list of video paths and I use a map
function to retrieve the frames then I convert the outputed list to a numpy array:
batch_frames = map(lambda vid: read_random_frames(vid), train_vids_batch)
frame_tensor = np.asarray(batch_frames)
y = frame_tensor[0]
I think it is simply because by preserving the range I end up with a float in the range [0, 255] whereas pyplot.imshow
is only capable of displaying MxNx3 float arrays in the range [0.0, 1.0]. When I convert the output to an uint8 using z = np.copy(x).astype('uint8')
it displays fine.
As @RHankins mentioned, plt.imshow
can display either float images with pixels within range [0.0, 1.0]
or integer images with pixels within range [0, 255].
skimage.transform.resize
calls a function wrap
(_warps.py#L161) which always converts an input image to float64
(_warps.py#L797).
That's why you always need to convert the output to whatever you prefer. For example to
resize image and get np.uint8
output image within range in [0, 255]
you do:
import matplotlib.pyplot as plt
from skimage import img_as_ubyte
import skimage.transform
x = img_as_ubyte(skimage.transform.resize(y, (100, 100)))
plt.imshow(x)
Can you please provide a full example? How do you read your image data, what is the original format? (Using y = scipy.misc.imread("somefile.png")
on a .png-file it works perfectly on my machine)
What is the data-type (and ndarray.dtype
) of your data?
import matplotlib.pyplot as plt
import skimage.transform
from scipy.misc import imread
y = imread("tree.png")
plt.subplot(121)
plt.imshow(y)
h,w,c = y.shape
x = skimage.transform.resize(y, (256, (w*256)//h), preserve_range=True)
plt.subplot(122)
plt.imshow(x)
plt.show()