color_label
: to add background color to the y-tick labels. [True/False]
def mosaic_plot(df, dic_color_row, row_labels=None, col_labels=None, alpha_label=None, top_label="Size",
x_label=None, y_label=None, pad=0.01, color_ylabel=False, ax=None, order="Size"):
"""
From a contingency table NxM, plot a mosaic plot with the values inside. There should be a double-index for rows
e.g.
3 4 1 0 2 5
Index_1 Index_2
AA C 0 0 0 2 3 0
P 6 0 0 13 0 0
BB C 0 2 0 0 0 0
P 45 1 10 10 1 0
CC C 0 6 35 15 29 0
P 1 1 0 2 0 0
DD C 0 56 0 3 0 0
P 30 4 2 0 1 9
order: how columns are order, by default, from the biggest to the smallest in term of category. Possible values are
- "Size" [default]
- "Normal" : as the columns are order in the input df
- list of column names to reorder the column
top_label: Size of each columns. The label can be changed to adapt to your value.
If `False`, nothing is displayed and the secondary legend is set on top instead of on right.
"""
is_multi = len(df.index.names) == 2
if ax == None:
fig, ax = plt.subplots(1,1, figsize=(len(df.columns), len(df.index.get_level_values(0).unique())))
size_col = df.sum().sort_values(ascending=False)
prop_com = size_col.div(size_col.sum())
if order == "Size":
df = df[size_col.index.values]
elif order == "Normal":
prop_com = prop_com[df.columns]
size_col = size_col[df.columns]
else:
df = df[order]
prop_com = prop_com[order]
size_col = size_col[order]
if is_multi:
inner_index = df.index.get_level_values(1).unique()
prop_ii0 = (df.swaplevel().loc[inner_index[0]]/(df.swaplevel().loc[inner_index[0]]+df.swaplevel().loc[inner_index[1]])).fillna(0)
alpha_ii = 0.5
true_y_labels = df.index.levels[0]
else:
alpha_ii = 1
true_y_labels = df.index
Yt = (df.groupby(level=0).sum().iloc[:,0].div(df.groupby(level=0).sum().iloc[:,0].sum())+pad).cumsum() - pad
Ytt = df.groupby(level=0).sum().iloc[:,0].div(df.groupby(level=0).sum().iloc[:,0].sum())
x = 0
for j in df.groupby(level=0).sum().iteritems():
bot = 0
S = float(j[1].sum())
for lab, k in j[1].iteritems():
bars = []
ax.bar(x, k/S, width=prop_com[j[0]], bottom=bot, color=dic_color_row[lab], alpha=alpha_ii, lw=0, align="edge")
if is_multi:
ax.bar(x, k/S, width=prop_com[j[0]]*prop_ii0.loc[lab, j[0]], bottom=bot, color=dic_color_row[lab], lw=0, alpha=1, align="edge")
bot += k/S + pad
x += prop_com[j[0]] + pad
## Aesthetic of the plot and ticks
# Y-axis
if row_labels == None:
row_labels = Yt.index
ax.set_yticks(Yt - Ytt/2)
ax.set_yticklabels(row_labels)
ax.set_ylim(0, 1 + (len(j[1]) - 1) * pad)
if y_label == None:
y_label = df.index.names[0]
ax.set_ylabel(y_label)
# X-axis
if col_labels == None:
col_labels = prop_com.index
xticks = (prop_com + pad).cumsum() - pad - prop_com/2.
ax.set_xticks(xticks)
ax.set_xticklabels(col_labels)
ax.set_xlim(0, prop_com.sum() + pad * (len(prop_com)-1))
if x_label == None:
x_label = df.columns.name
ax.set_xlabel(x_label)
# Top label
if top_label:
ax2 = ax.twiny()
ax2.set_xlim(*ax.get_xlim())
ax2.set_xticks(xticks)
ax2.set_xticklabels(size_col.values.astype(int))
ax2.set_xlabel(top_label)
ax2.tick_params(top=False, right=False, pad=0, length=0)
# Ticks and axis settings
ax.tick_params(top=False, right=False, pad=5)
sns.despine(left=0, bottom=False, right=0, top=0, offset=3)
# Legend
if is_multi:
if alpha_label == None:
alpha_label = inner_index
bars = [ax.bar(np.nan, np.nan, color="0.2", alpha=[1, 0.5][b]) for b in range(2)]
if top_label:
plt.legend(bars, alpha_label, loc='center left', bbox_to_anchor=(1, 0.5), ncol=1, )
else:
plt.legend(bars, alpha_label, loc="lower center", bbox_to_anchor=(0.5, 1), ncol=2)
plt.tight_layout(rect=[0, 0, .9, 0.95])
if color_ylabel:
for tick, label in zip(ax.get_yticklabels(), true_y_labels):
tick.set_bbox(dict( pad=5, facecolor=dic_color_row[label]))
tick.set_color("w")
tick.set_fontweight("bold")
return ax