In my continued effort to learn scala, I'm working through 'Scala by example' by Odersky and on the chapter on first class functions, the section on anonymous function avoids a situation of recursive anonymous function. I have a solution that seems to work. I'm curious if there is a better answer out there.
From the pdf: Code to showcase higher order functions
def sum(f: Int => Int, a: Int, b: Int): Int =
if (a > b) 0 else f(a) + sum(f, a + 1, b)
def id(x: Int): Int = x
def square(x: Int): Int = x * x
def powerOfTwo(x: Int): Int = if (x == 0) 1 else 2 * powerOfTwo(x-1)
def sumInts(a: Int, b: Int): Int = sum(id, a, b)
def sumSquares(a: Int, b: Int): Int = sum(square, a, b)
def sumPowersOfTwo(a: Int, b: Int): Int = sum(powerOfTwo, a, b)
scala> sumPowersOfTwo(2,3)
res0: Int = 12
from the pdf: Code to showcase anonymous functions
def sum(f: Int => Int, a: Int, b: Int): Int =
if (a > b) 0 else f(a) + sum(f, a + 1, b)
def sumInts(a: Int, b: Int): Int = sum((x: Int) => x, a, b)
def sumSquares(a: Int, b: Int): Int = sum((x: Int) => x * x, a, b)
// no sumPowersOfTwo
My code:
def sumPowersOfTwo(a: Int, b: Int): Int = sum((x: Int) => {
def f(y:Int):Int = if (y==0) 1 else 2 * f(y-1); f(x) }, a, b)
scala> sumPowersOfTwo(2,3)
res0: Int = 12