Using pandas cut I can define bins by providing the edges and pandas creates bins like (a, b]
.
My question is how can I sort the bins (from the lowest to the highest)?
import numpy as np
import pandas as pd
y = pd.Series(np.random.randn(100))
x1 = pd.Series(np.sign(np.random.randn(100)))
x2 = pd.cut(pd.Series(np.random.randn(100)), bins = [-3, -0.5, 0, 0.5, 3])
model = pd.concat([y, x1, x2], axis = 1, keys = ['Y', 'X1', 'X2'])
I have an intermediate result where the order of the bins is preserved
int_output = model.groupby(['X1', 'X2']).mean().unstack()
int_output.columns = int_output.columns.get_level_values(1)
X2 (-3, -0.5] (-0.5, 0] (0, 0.5] (0.5, 3]
X1
-1.0 0.101475 -0.344419 -0.482992 -0.015179
1.0 0.249961 0.484757 -0.066383 -0.249414
But then I do other operations that arbitrarily changes the order of the bins:
output = pd.concat(int_output.to_dict('series'), axis = 1)
(-0.5, 0] (-3, -0.5] (0, 0.5] (0.5, 3]
X1
-1.0 -0.344419 0.101475 -0.482992 -0.015179
1.0 0.484757 0.249961 -0.066383 -0.249414
Now I would like to plot the data in a bar chart, but I want the bins to be sorted from the lowest (-3, -0.5] to the highest (0.5, 3].
I think I can achieve this by manipulating the string, using a split on "," and then cleaning brackets, but I would like to know if there is a better way.
There is main problem losing ordered
CategoricalIndex
.
np.random.seed(12456)
y = pd.Series(np.random.randn(100))
x1 = pd.Series(np.sign(np.random.randn(100)))
x2 = pd.cut(pd.Series(np.random.randn(100)), bins = [-3, -0.5, 0, 0.5, 3])
model = pd.concat([y, x1, x2], axis = 1, keys = ['Y', 'X1', 'X2'])
int_output = model.groupby(['X1', 'X2']).mean().unstack()
int_output.columns = int_output.columns.get_level_values(1)
print (int_output)
X2 (-3, -0.5] (-0.5, 0] (0, 0.5] (0.5, 3]
X1
-1.0 0.230060 -0.079266 -0.079834 -0.064455
1.0 -0.451351 0.268688 0.020091 -0.280218
print (int_output.columns)
CategoricalIndex(['(-3, -0.5]', '(-0.5, 0]', '(0, 0.5]', '(0.5, 3]'],
categories=['(-3, -0.5]', '(-0.5, 0]', '(0, 0.5]', '(0.5, 3]'],
ordered=True, name='X2', dtype='category')
output = pd.concat(int_output.to_dict('series'), axis = 1)
print (output)
(-0.5, 0] (-3, -0.5] (0, 0.5] (0.5, 3]
X1
-1.0 -0.079266 0.230060 -0.079834 -0.064455
1.0 0.268688 -0.451351 0.020091 -0.280218
print (output.columns)
Index(['(-0.5, 0]', '(-3, -0.5]', '(0, 0.5]', '(0.5, 3]'], dtype='object')
One possible solution is extract
first number from output.columns
, create helper Series and sort it. Last reindex
original columns:
cat = output.columns.str.extract('\((.*),', expand=False).astype(float)
a = pd.Series(cat, index=output.columns).sort_values()
print (a)
(-3, -0.5] -3.0
(-0.5, 0] -0.5
(0, 0.5] 0.0
(0.5, 3] 0.5
dtype: float64
output = output.reindex(columns=a.index)
print (output)
(-3, -0.5] (-0.5, 0] (0, 0.5] (0.5, 3]
X1
-1.0 0.230060 -0.079266 -0.079834 -0.064455
1.0 -0.451351 0.268688 0.020091 -0.280218
An easy fix to the problem you've highlighted above is to simply reorder the columns:
output[sorted(output.columns)]
I made a function to do so.
def dfsortbybins(df, col):
"""
param df: pandas dataframe
param col: name of column containing bins
"""
d=dict(zip(bins,[float(s.split(',')[0].split('(')[1]) for s in bins]))
df[f'{col} dfrankbybins']=df.apply(lambda x : d[x[col]] if not pd.isnull(x[col]) else x[col], axis=1)
df=df.sort_values(f'{col} dfrankbybins').drop(f'{col} dfrankbybins',axis=1)
return df