识别连接发作其中链上一起组(identify groups of linked episodes w

2019-06-17 21:19发布

以联IDS的这个简单的数据帧:

test <- data.frame(id1=c(10,10,1,1,24,8),id2=c(1,36,24,45,300,11))

> test
  id1 id2
1  10   1
2  10  36
3   1  24
4   1  45
5  24 300
6   8  11

我现在要一起组所有链接的ID。 通过“链接”,我的意思是贯彻,使得在一个组的所有ID标记一起环节链。 一类分支结构的。 即:

Group 1
10 --> 1,   1 --> (24,45)
                   24 --> 300
                          300 --> NULL
                   45 --> NULL
10 --> 36, 36 --> NULL,
Final group members: 10,1,24,36,45,300

Group 2
8 --> 11
      11 --> NULL
Final group members: 8,11

现在,我大致知道我想的逻辑,但不知道我怎么会优雅地实现它。 我想到的是一个递归使用的match%in%到每个分支往下走,但我真的难倒这个时候。

最终的结果我会追的是:

result <- data.frame(group=c(1,1,1,1,1,1,2,2),id=c(10,1,24,36,45,300,8,11))

> result
  group  id
1     1  10
2     1   1
3     1  24
4     1  36
5     1  45
6     1 300
7     2   8
8     2  11

Answer 1:

所述Bioconductor的包RBGL(的R接口到升压图形库)包含一个函数, connectedComp()其识别在图表所连接的部件-你想要什么。

(要使用该功能,您首先需要,可安装RBGL包在这里和这里 。)

library(RBGL)
test <- data.frame(id1=c(10,10,1,1,24,8),id2=c(1,36,24,45,300,11))

## Convert your 'from-to' data to a 'node and edge-list' representation  
## used by the 'graph' & 'RBGL' packages 
g <- ftM2graphNEL(as.matrix(test))

## Extract the connected components
cc <- connectedComp(g)

## Massage results into the format you're after 
ld <- lapply(seq_along(cc), 
             function(i) data.frame(group = names(cc)[i], id = cc[[i]]))
do.call(rbind, ld)
#   group  id
# 1     1  10
# 2     1   1
# 3     1  24
# 4     1  36
# 5     1  45
# 6     1 300
# 7     2   8
# 8     2  11


Answer 2:

这里有一个备选答案,我在由Josh正确的方向轻推在自己后发现。 这个答案使用igraph包。 对于那些跨越这个答案搜索而来,我的test数据集被称为图论中的“边列表”或“邻接表”( http://en.wikipedia.org/wiki/Graph_theory )

library(igraph)
test <- data.frame(id1=c(10,10,1,1,24,8 ),id2=c(1,36,24,45,300,11))
gr.test <- graph.data.frame(test)
links <- data.frame(id=unique(unlist(test)),group=clusters(gr.test)$membership)
links[order(links$group),]

#   id group
#1  10     1
#2   1     1
#3  24     1
#5  36     1
#6  45     1
#7 300     1
#4   8     2
#8  11     2


Answer 3:

如果不使用套餐:

# 2 sets of test data
mytest <- data.frame(id1=c(10,10,3,1,1,24,8,11,32,11,45),id2=c(1,36,50,24,45,300,11,8,32,12,49))
test <- data.frame(id1=c(10,10,1,1,24,8),id2=c(1,36,24,45,300,11))

grouppairs <- function(df){

  # from wide to long format; assumes df is 2 columns of related id's
  test <- data.frame(group = 1:nrow(df),val = unlist(df))

  # keep moving to next pair until all same values have same group
  i <- 0
  while(any(duplicated(unique(test)$val))){
    i <- i+1

    # get group of matching values
    matches <- test[test$val == test$val[i],'group']

    # change all groups with matching values to same group
    test[test$group %in% matches,'group'] <- test$group[i]
  }

  # renumber starting from 1 and show only unique values in group order
  test$group <- match(test$group, sort(unique(test$group)))
  unique(test)[order(unique(test)$group), ]
}

# test
grouppairs(test)
grouppairs(mytest)


文章来源: identify groups of linked episodes which chain together