I have a dataframe of
date, string, string
I want to select dates before a certain period. I have tried the following with no luck
data.filter(data("date") < new java.sql.Date(format.parse("2015-03-14").getTime))
I'm getting an error stating the following
org.apache.spark.sql.AnalysisException: resolved attribute(s) date#75 missing from date#72,uid#73,iid#74 in operator !Filter (date#75 < 16508);
As far as I can guess the query is incorrect. Can anyone show me what way the query should be formatted?
I checked that all enteries in the dataframe have values - they do.
The following solutions are applicable since spark 1.5 :
For lower than :
// filter data where the date is lesser than 2015-03-14
data.filter(data("date").lt(lit("2015-03-14")))
For greater than :
// filter data where the date is greater than 2015-03-14
data.filter(data("date").gt(lit("2015-03-14")))
For equality, you can use either equalTo
or ===
:
data.filter(data("date") === lit("2015-03-14"))
If your DataFrame
date column is of type StringType
, you can convert it using the to_date
function :
// filter data where the date is greater than 2015-03-14
data.filter(to_date(data("date")).gt(lit("2015-03-14")))
You can also filter according to a year using the year
function :
// filter data where year is greater or equal to 2016
data.filter(year($"date").geq(lit(2016)))
In PySpark(python) one of the option is to have the column in unix_timestamp format.We can convert string to unix_timestamp and specify the format as shown below.
Note we need to import unix_timestamp and lit function
from pyspark.sql.functions import unix_timestamp, lit
df.withColumn("tx_date", to_date(unix_timestamp(df_cast["date"], "MM/dd/yyyy").cast("timestamp")))
Now we can apply the filters
df_cast.filter(df_cast["tx_date"] >= lit('2017-01-01')) \
.filter(df_cast["tx_date"] <= lit('2017-01-31')).show()
Don't use this as suggested in other answers
.filter(f.col("dateColumn") < f.lit('2017-11-01'))
But use this instead
.filter(f.col("dateColumn") < f.unix_timestamp(f.lit('2017-11-01 00:00:00')).cast('timestamp'))
This will use the TimestampType
instead of the StringType
, which will be more performant in some cases. For example Parquet predicate pushdown will only work with the latter.