重塑多值列宽格式(Reshape multiple value columns to wide fo

2019-06-17 12:07发布

我有以下的数据帧,我想用铸铁打造的“数据透视表”与两个值(价值和百分比)列。 下面是数据帧:

expensesByMonth <- structure(list(month = c("2012-02-01", "2012-02-01", "2012-02-01", 
"2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01", 
"2012-02-01", "2012-02-01", "2012-02-01", "2012-02-01", "2012-03-01", 
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", 
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", 
"2012-03-01", "2012-03-01", "2012-03-01", "2012-03-01", "2012-04-01", 
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", 
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", 
"2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", "2012-04-01", 
"2012-04-01", "2012-04-01", "2012-05-01", "2012-05-01", "2012-05-01", 
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", 
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", 
"2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", "2012-05-01", 
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", 
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", 
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", 
"2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", "2012-06-01", 
"2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", 
"2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", "2012-07-01", 
"2012-07-01", "2012-07-01", "2012-07-01"), 
expense_type = c("Adjustment", "Bank Service Charge", "Cable", "Clubbing", "Dining", "Education", 
"Gifts", "Groceries", "Lunch", "Personal Care", "Rent", "Transportation", 
"Adjustment", "Bank Service Charge", "Cable", "Clubbing", "Dining", 
"Gifts", "Groceries", "Lunch", "Medical Expenses", "Miscellaneous", 
"Personal Care", "Phone", "Recreation", "Rent", "Transportation", 
"Adjustment", "Bank Service Charge", "Clothes", "Clubbing", "Computer", 
"Dining", "Gifts", "Groceries", "Lunch", "Maintenance", "Medical Expenses", 
"Miscellaneous", "Personal Care", "Phone", "Recreation", "Rent", 
"Transportation", "Travel", "Bank Service Charge", "Cable", "Clothes", 
"Clubbing", "Computer", "Dining", "Electric", "Gifts", "Groceries", 
"Lunch", "Maintenance", "Medical Expenses", "Miscellaneous", 
"Personal Care", "Phone", "Recreation", "Rent", "Transportation", 
"Adjustment", "Bank Service Charge", "Cable", "Charity", "Clothes", 
"Computer", "Dining", "Education", "Electric", "Gifts", "Groceries", 
"Lunch", "Maintenance", "Medical Expenses", "Miscellaneous", 
"Personal Care", "Phone", "Recreation", "Rent", "Transportation", 
"Computer", "Gifts", "Groceries", "Lunch", "Maintenance", "Medical Expenses", 
"Miscellaneous", "Personal Care", "Phone", "Recreation", "Rent", 
"Repair and Maintenance", "Transportation"), 
value = c(442.37, 200, 21.33, 75, 22.5, 1800, 10, 233.33, 154.75, 30, 545, 32.5, 
2, 200, 36.33, 206.55, 74.5, 89, 372.68, 383.75, 144.19, 508.11, 
30, 38.4, 81.75, 1746.7, 35, 16.37, 200, 806.9, 324.81, 756, 
80.5, 100, 398.37, 326.25, 151, 29.95, 101, 90, 38.45, 61, 743.75, 
129, 228.53, 200, 39.05, 237, 40, 283.83, 141.32, 32.88, 30, 
424.4, 412, 142.75, 86.55, 1051.5, 30, 38.9, 51.5, 749.7, 35, 
10, 200, 16, 32.59, 149.81, 100, 80, 60, 31.91, 55, 397.25, 486.4, 
115.6, 47.08, 1000, 120, 41.11, 256, 761.6, 55, 10.54, 10, 342.11, 
291, 76.5, 66.8, 1008, 30, 41.11, 316, 765, 65, 62), 
percent = c(0.124025030980324, 0.0560729845967511, 0.00598018380724351, 0.0210273692237817, 
0.0063082107671345, 0.50465686137076, 0.00280364922983756, 0.0654175474797997, 
0.0433864718317362, 0.00841094768951267, 0.152798883026147, 0.00911185999697206, 
0.000506462461002391, 0.0506462461002391, 0.00919989060410842, 
0.0523049106600219, 0.018865726672339, 0.0225375795146064, 0.0943742149831854, 
0.0971774847048337, 0.0365134111259673, 0.128669320529962, 0.00759693691503586, 
0.0097240792512459, 0.0207016530934727, 0.442318990316438, 0.00886309306754183, 
0.00357276925628781, 0.0436502047194601, 0.176106750940662, 0.0708901149746392, 
0.164997773839559, 0.0175692073995827, 0.0218251023597301, 0.0869446602704567, 
0.0712043964486193, 0.0329559045631924, 0.00653661815673915, 
0.0220433533833274, 0.0196425921237571, 0.00839175185731621, 
0.0133133124394353, 0.162324198800492, 0.0281543820440518, 0.0498769064226911, 
0.0496724104530621, 0.00969853814096037, 0.0588618063868785, 
0.00993448209061241, 0.070492601294463, 0.0350985252261336, 0.0081661442784834, 
0.00745086156795931, 0.105404854981398, 0.102325165533308, 0.035453682960873, 
0.0214957356235626, 0.261152697956974, 0.00745086156795931, 0.00966128383312057, 
0.0127906456916635, 0.186197030583303, 0.00869267182928586, 0.00249044292527426, 
0.0498088585054852, 0.00398470868043882, 0.00811635349346881, 
0.0373093254635337, 0.0249044292527426, 0.0199235434021941, 0.0149426575516456, 
0.00794700337455016, 0.0136974360890084, 0.09893284520652, 0.12113514388534, 
0.0287895202161704, 0.0117250052921912, 0.249044292527426, 0.0298853151032911, 
0.0102382108658025, 0.0637553388870211, 0.189672133188888, 0.0136974360890084, 
0.00341757293956667, 0.0032424790697976, 0.110928451456846, 0.0943561409311103, 
0.0248049648839517, 0.021659760186248, 0.326841890235599, 0.00972743720939281, 
0.013329831455938, 0.102462338605604, 0.248049648839517, 0.0210761139536844, 
0.0201033702327451)), 
.Names = c("month", "expense_type", "value", "percent"), 
row.names = c(NA, -96L), 
class = "data.frame"
)

这是我想创建(当然,不同的标题名称,如:[月] _value,[月] _percent)什么:

expenses   value     percent value.1   percent.1 value.2   percent.2 value.3   percent.3 value.4   percent.4 value.5   percent.5
1              Adjustment  442.37 0.124025031    2.00 0.000506462   16.37 0.003572769    0.00 0.000000000   10.00 0.002490443    0.00 0.000000000
2     Bank Service Charge  200.00 0.056072985  200.00 0.050646246  200.00 0.043650205  200.00 0.049672410  200.00 0.049808859    0.00 0.000000000
3                   Cable   21.33 0.005980184   36.33 0.009199891    0.00 0.000000000   39.05 0.009698538   16.00 0.003984709    0.00 0.000000000
4                 Charity    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000   32.59 0.008116353    0.00 0.000000000
5                 Clothes    0.00 0.000000000    0.00 0.000000000  806.90 0.176106751  237.00 0.058861806  149.81 0.037309325    0.00 0.000000000
6                Clubbing   75.00 0.021027369  206.55 0.052304911  324.81 0.070890115   40.00 0.009934482    0.00 0.000000000    0.00 0.000000000
7                Computer    0.00 0.000000000    0.00 0.000000000  756.00 0.164997774  283.83 0.070492601  100.00 0.024904429   10.54 0.003417573
8                  Dining   22.50 0.006308211   74.50 0.018865727   80.50 0.017569207  141.32 0.035098525   80.00 0.019923543    0.00 0.000000000
9               Education 1800.00 0.504656861    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000   60.00 0.014942658    0.00 0.000000000
10               Electric    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000   32.88 0.008166144   31.91 0.007947003    0.00 0.000000000
11                  Gifts   10.00 0.002803649   89.00 0.022537580  100.00 0.021825102   30.00 0.007450862   55.00 0.013697436   10.00 0.003242479
12              Groceries  233.33 0.065417547  372.68 0.094374215  398.37 0.086944660  424.40 0.105404855  397.25 0.098932845  342.11 0.110928451
13                  Lunch  154.75 0.043386472  383.75 0.097177485  326.25 0.071204396  412.00 0.102325166  486.40 0.121135144  291.00 0.094356141
14            Maintenance    0.00 0.000000000    0.00 0.000000000  151.00 0.032955905  142.75 0.035453683  115.60 0.028789520   76.50 0.024804965
15       Medical Expenses    0.00 0.000000000  144.19 0.036513411   29.95 0.006536618   86.55 0.021495736   47.08 0.011725005   66.80 0.021659760
16          Miscellaneous    0.00 0.000000000  508.11 0.128669321  101.00 0.022043353 1051.50 0.261152698 1000.00 0.249044293 1008.00 0.326841890
17          Personal Care   30.00 0.008410948   30.00 0.007596937   90.00 0.019642592   30.00 0.007450862  120.00 0.029885315   30.00 0.009727437
18                  Phone    0.00 0.000000000   38.40 0.009724079   38.45 0.008391752   38.90 0.009661284   41.11 0.010238211   41.11 0.013329831
19             Recreation    0.00 0.000000000   81.75 0.020701653   61.00 0.013313312   51.50 0.012790646  256.00 0.063755339  316.00 0.102462339
20                   Rent  545.00 0.152798883 1746.70 0.442318990  743.75 0.162324199  749.70 0.186197031  761.60 0.189672133  765.00 0.248049649
21 Repair and Maintenance    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000   65.00 0.021076114
22         Transportation   32.50 0.009111860   35.00 0.008863093  129.00 0.028154382   35.00 0.008692672   55.00 0.013697436   62.00 0.020103370
23                 Travel    0.00 0.000000000    0.00 0.000000000  228.53 0.049876906    0.00 0.000000000    0.00 0.000000000    0.00 0.000000000

同时采用具有单值列投我也遇到了以下错误:它没有考虑到“值”参数。 所以,即使我指定值=“百分比”它仍然显示从“值”列中的值。

cast(expensesByMonth, expense_type ~ month, fun.aggregate = sum, value = "percent")

Answer 1:

你最好的选择是你的数据重塑长格式,采用melt ,然后dcast

library(reshape2)

meltExpensesByMonth <- melt(expensesByMonth, id.vars=1:2)
dcast(meltExpensesByMonth, expense_type ~ month + variable, fun.aggregate = sum)

输出的前几行:

             expense_type 2012-02-01_value 2012-02-01_percent 2012-03-01_value 2012-03-01_percent
1              Adjustment           442.37        0.124025031             2.00       0.0005064625
2     Bank Service Charge           200.00        0.056072985           200.00       0.0506462461
3                   Cable            21.33        0.005980184            36.33       0.0091998906
4                 Charity             0.00        0.000000000             0.00       0.0000000000


Answer 2:

data.table可以投多个value.var变量。 这是很直接的(和效率)。

因此:

library(data.table) # v1.9.5+
dcast(setDT(expensesByMonth), expense_type ~ month, value.var = c("value", "percent"))


Answer 3:

我更喜欢tabulate封装功能tables这一点。 它需要的因素,但不管怎样这是你所拥有的数据类型是个好主意。

library(tables)
expensesByMonth$month= as.factor(expensesByMonth$month)
expensesByMonth$expense_type= as.factor(expensesByMonth$expense_type)
tabular(expense_type~(month)*(value+percent)*(sum),data=expensesByMonth)
# Optional formatting
tabular(expense_type~month*
   ((Format(digits=1))*value+(Format(digits=3))*percent)*sum,
   data=expensesByMonth)

部分输出:

                       value      percent  value      percent  value      percent 
expense_type           sum        sum      sum        sum      sum        sum     
Adjustment              442       0.124025    2       0.000506   16       0.003573
Bank Service Charge     200       0.056073  200       0.050646  200       0.043650
Cable                    21       0.005980   36       0.009200    0       0.000000


Answer 4:

由于这个问题是经常访问,这在我看来,值得一完整的基础R的答案了。 的reshape从基础R -function是相当通用的,可以很容易地被应用到这个问题,以及:

expenses <- reshape(expensesByMonth, idvar = 'expense_type', direction = 'wide',
                    timevar = 'month', sep = '_')

与细胞NA -值可以替换为0与:

expenses[is.na(expenses)] <- 0

这给(由责令expense_type ,使其更容易与期望的输出比较):

 > expenses[order(expenses$expense_type),] expense_type value_2012-02-01 percent_2012-02-01 value_2012-03-01 percent_2012-03-01 value_2012-04-01 percent_2012-04-01 value_2012-05-01 percent_2012-05-01 value_2012-06-01 percent_2012-06-01 value_2012-07-01 percent_2012-07-01 1 Adjustment 442.37 0.124025031 2.00 0.0005064625 16.37 0.003572769 0.00 0.000000000 10.00 0.002490443 0.00 0.000000000 2 Bank Service Charge 200.00 0.056072985 200.00 0.0506462461 200.00 0.043650205 200.00 0.049672410 200.00 0.049808859 0.00 0.000000000 3 Cable 21.33 0.005980184 36.33 0.0091998906 0.00 0.000000000 39.05 0.009698538 16.00 0.003984709 0.00 0.000000000 67 Charity 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 32.59 0.008116353 0.00 0.000000000 30 Clothes 0.00 0.000000000 0.00 0.0000000000 806.90 0.176106751 237.00 0.058861806 149.81 0.037309325 0.00 0.000000000 4 Clubbing 75.00 0.021027369 206.55 0.0523049107 324.81 0.070890115 40.00 0.009934482 0.00 0.000000000 0.00 0.000000000 32 Computer 0.00 0.000000000 0.00 0.0000000000 756.00 0.164997774 283.83 0.070492601 100.00 0.024904429 10.54 0.003417573 5 Dining 22.50 0.006308211 74.50 0.0188657267 80.50 0.017569207 141.32 0.035098525 80.00 0.019923543 0.00 0.000000000 6 Education 1800.00 0.504656861 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 60.00 0.014942658 0.00 0.000000000 52 Electric 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 32.88 0.008166144 31.91 0.007947003 0.00 0.000000000 7 Gifts 10.00 0.002803649 89.00 0.0225375795 100.00 0.021825102 30.00 0.007450862 55.00 0.013697436 10.00 0.003242479 8 Groceries 233.33 0.065417547 372.68 0.0943742150 398.37 0.086944660 424.40 0.105404855 397.25 0.098932845 342.11 0.110928451 9 Lunch 154.75 0.043386472 383.75 0.0971774847 326.25 0.071204396 412.00 0.102325166 486.40 0.121135144 291.00 0.094356141 37 Maintenance 0.00 0.000000000 0.00 0.0000000000 151.00 0.032955905 142.75 0.035453683 115.60 0.028789520 76.50 0.024804965 21 Medical Expenses 0.00 0.000000000 144.19 0.0365134111 29.95 0.006536618 86.55 0.021495736 47.08 0.011725005 66.80 0.021659760 22 Miscellaneous 0.00 0.000000000 508.11 0.1286693205 101.00 0.022043353 1051.50 0.261152698 1000.00 0.249044293 1008.00 0.326841890 10 Personal Care 30.00 0.008410948 30.00 0.0075969369 90.00 0.019642592 30.00 0.007450862 120.00 0.029885315 30.00 0.009727437 24 Phone 0.00 0.000000000 38.40 0.0097240793 38.45 0.008391752 38.90 0.009661284 41.11 0.010238211 41.11 0.013329831 25 Recreation 0.00 0.000000000 81.75 0.0207016531 61.00 0.013313312 51.50 0.012790646 256.00 0.063755339 316.00 0.102462339 11 Rent 545.00 0.152798883 1746.70 0.4423189903 743.75 0.162324199 749.70 0.186197031 761.60 0.189672133 765.00 0.248049649 95 Repair and Maintenance 0.00 0.000000000 0.00 0.0000000000 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 65.00 0.021076114 12 Transportation 32.50 0.009111860 35.00 0.0088630931 129.00 0.028154382 35.00 0.008692672 55.00 0.013697436 62.00 0.020103370 45 Travel 0.00 0.000000000 0.00 0.0000000000 228.53 0.049876906 0.00 0.000000000 0.00 0.000000000 0.00 0.000000000 

您还可以与实现这一tidyverse

library(dplyr)
library(tidyr)

expensesByMonth %>% 
  gather(k, v, 3:4) %>% 
  unite(km, k, month) %>% 
  spread(km, v, fill = 0)


Answer 5:

从长期重塑与多个值/测量列宽格式现在可以用新的功能pivot_wider()的tidyr的当前的开发版本。 参见: https://tidyr.tidyverse.org/dev/articles/pivot.html 。

这是优于先前tidyr策略gather()spread()因为这些属性不再下降(例如,日期仍日期,字符串保持字符串或数字保持数字)。

pivot_wider()对应: pivot_longer()的工作原理类似于spread() 然而,它提供了额外的功能,如多值列。 为此,参数values_from从中柱(S) -即表示值取-可能需要多于一个的列名。

NA S可以使用参数来填充values_fill

# devtools::install_github("tidyverse/tidyr")
library("tidyr")
packageVersion("tidyr")
#> [1] '0.8.3.9000'
library(magrittr)

pivot_wider(expensesByMonth, expense_type, 
            names_from = "month",
            values_from = c("value", "percent"))
#> # A tibble: 23 x 13
#>    expense_type `value_2012-02-~ `value_2012-03-~ `value_2012-04-~
#>    <chr>                   <dbl>            <dbl>            <dbl>
#>  1 Adjustment              442.               2               16.4
#>  2 Bank Servic~            200              200              200  
#>  3 Cable                    21.3             36.3             NA  
#>  4 Clubbing                 75              207.             325. 
#>  5 Dining                   22.5             74.5             80.5
#>  6 Education              1800               NA               NA  
#>  7 Gifts                    10               89              100  
#>  8 Groceries               233.             373.             398. 
#>  9 Lunch                   155.             384.             326. 
#> 10 Personal Ca~             30               30               90  
#> # ... with 13 more rows, and 9 more variables: `value_2012-05-01` <dbl>,
#> #   `value_2012-06-01` <dbl>, `value_2012-07-01` <dbl>,
#> #   `percent_2012-02-01` <dbl>, `percent_2012-03-01` <dbl>,
#> #   `percent_2012-04-01` <dbl>, `percent_2012-05-01` <dbl>,
#> #   `percent_2012-06-01` <dbl>, `percent_2012-07-01` <dbl>

另外,在重塑可以使用枢轴规格 ,提供了更好的控制来完成(见上面的链接):

spec <- expensesByMonth %>%
    expand(month, .value = c("percent", "value")) %>%
    dplyr::mutate(.name = paste(.$month, .$.value, sep = "_"))
pivot_wider(expensesByMonth, spec = spec)

由创建于2019年3月26日reprex包 (v0.2.1)



文章来源: Reshape multiple value columns to wide format
标签: r reshape r-faq