I have a container with shared_ptr<>
, e.g. a vector<shared_ptr<string>>
v
and I'd like to iterate over v
indicating const-ness.
This code:
vector<shared_ptr<string>> v;
v.push_back(make_shared<std::string>("hallo"));
...
for (const auto &s : v) {
*s += "."; // <<== should be invalid
}
looks like what I want to do (indicating that s
is const
) but of course it does not make the string const
.
Is there an elegant way to iterate over a container of shared_ptr
which makes clear that the content won't be modified?
Something like
for (shared_ptr<const string> s : v) {
*s += "."; // <<== will not compile
}
(but this code would not compile for other reasons :))
Edit:
I made a mistake. Originally I was declaring a reference, which results in a compiler error
for (shared_ptr<const string> &s : v) { // <<== does not compile
...
}
If you declare a shared_ptr<const string>
the example works. In my eyes this is a good trade-off but this way the pointer gets copied which can be time consuming in loops with little code and big containers..
This is a well-known limitation of C++ that some don't consider to be a limitation.
You want to iterate const
ly, but an immutable pointer doesn't imply an immutable pointee.
The type shared_ptr<string>
and the type shared_ptr<const string>
are effectively unrelated.
Option 1
for (const auto& ptr : v) {
const auto& s = *ptr;
s += "."; // <<== is invalid
}
Option 2
Just don't modify it.
Here is the answer.
But first, the sermon:
A pointer and the thing it points to are two separate objects. Either, none or both may be const and a const pointer simply means that it will not point to a different thing. If the pointee is const, the object may not be changed through the (possibly non-const) pointer.
Having said that, we (I) often write value-semantic wrapper objects that use unique_ptr
or shared_ptr
as the pimpl. Often we wish to propogate the constness of the wrapper to impl.
I believe c++17 will solve this with it's propagate_const
pointer wrapper.
In the meantime it's straightforward to build your own:
#include <iostream>
#include <type_traits>
#include <memory>
#include <string>
#include <vector>
namespace traits
{
template<class T> struct pointee;
template<class T, class D>
struct pointee<std::unique_ptr<T, D>> {
using type = T;
};
template<class T>
struct pointee<std::shared_ptr<T>> {
using type = T;
};
template<class T> using pointee_t = typename pointee<T>::type;
}
template<class PointerType>
struct propagate_const
{
using pointer_type = PointerType;
using element_type = traits::pointee_t<pointer_type>;
using value_type = std::decay_t<element_type>;
using reference = value_type&;
using const_reference = const value_type&;
propagate_const(pointer_type p) : _ptr(std::move(p)) {}
const_reference operator*() const {
return *_ptr;
}
auto operator*()
-> std::enable_if_t<not std::is_const<element_type>::value, reference>
{
return *_ptr;
}
private:
pointer_type _ptr;
};
template<class PointerType>
auto make_propagating_pointer(PointerType&& p)
{
return propagate_const<PointerType>(std::forward<PointerType>(p));
}
int main()
{
using namespace std;
vector<propagate_const<shared_ptr<string>>> v;
v.emplace_back(make_shared<string>("hello"));
for (const auto& p : v)
{
// *p += " there"; // compile error
cout << *p;
cout << endl;
}
for (auto& p : v)
{
*p += " there";
cout << *p;
cout << endl;
}
return 0;
}
expected output:
hello
hello there
This one is very simple, supporting only operator*
but it's trivial to add a complete set of operators. Note that I disable mutable access when the pointee is const.
reference: http://en.cppreference.com/w/cpp/experimental/propagate_const
And just for fun, here's a complete example of a shared_string
class that uses shared_ptr
internally and propagates constness correctly.
#include <iostream>
#include <type_traits>
#include <memory>
#include <string>
#include <vector>
template<class PointerType>
struct propagate_const
{
using pointer_type = PointerType;
using element_type = std::remove_reference_t<decltype(*std::declval<PointerType&>())>;
using reference = element_type&;
using const_reference = const element_type&;
propagate_const(pointer_type p) : _ptr(std::move(p)) {}
const_reference operator*() const {
return *_ptr;
}
auto operator*()
-> std::enable_if_t<not std::is_const<element_type>::value, reference>
{
return *_ptr;
}
private:
pointer_type _ptr;
};
template<class PointerType>
auto make_propagating_pointer(PointerType&& p)
{
return propagate_const<PointerType>(std::forward<PointerType>(p));
}
struct shared_string
{
shared_string(std::string s) : _impl(std::make_shared<std::string>(std::move(s))) {};
shared_string(std::shared_ptr<std::string> sp) : _impl(sp) {};
shared_string(propagate_const<std::shared_ptr<std::string>> sp) : _impl(sp) {};
auto& operator += (const std::string& s) {
*_impl += s;
return *this;
}
friend std::ostream& operator<<(std::ostream& os, const shared_string& ss) {
return os << *(ss._impl);
}
private:
propagate_const<std::shared_ptr<std::string>> _impl;
};
template<class T, std::enable_if_t<std::is_const<T>::value>* = nullptr >
std::string check_const(T&)
{
return std::string("const");
}
template<class T, std::enable_if_t<not std::is_const<T>::value>* = nullptr >
std::string check_const(T&)
{
return std::string("not const");
}
int main()
{
using namespace std;
// a vector of mutable shared_strings
vector<shared_string> v;
// a vector of immutable shared_strings
vector<const shared_string> cv;
// make a shared_string
v.emplace_back(make_shared<string>("hello"));
// refer to the *same one* in cv
cv.emplace_back(v[0]);
for (const auto& p : v)
{
// *p += " there"; // immutable reference to mutable shared string - not allowed
cout << check_const(p) << " " << p;
cout << endl;
}
for (auto& p : v)
{
cout << check_const(p) << " " << p;
p += " there"; // mutable reference to mutable shared string - allowed
cout << " becomes " << p;
cout << endl;
}
for (auto&p : cv)
{
cout << check_const(p) << " " << p;
// p += " world"; // p is actually immutable because cv contains immutable objects
cout << endl;
}
return 0;
}
expected output:
const hello
not const hello becomes hello there
const hello there
I would go with template approarch
template <class T,class F>
void forEach(const std::vector<std::shared_ptr<T>>& vec, F&& f){
for (const auto& ptr : vec){
if (ptr){
f(std::cref(*ptr));
}
}
}
I you put a lambda function there, the compiler will probably inline it anyway, so no performance damage here.