I want to compute an LU decomposition of a matrix and extract the linear combinations out of it.
I first asked a question using the library Armadillo here but as pointed out by one comment, Armadillo is not able to deal with modulus computation.
Thus I started to develop an LU using prime modulus from scratch, here is what I obtain but there is still a bug that I am not able to see.
Here is the code that I have for now. (Do not think too much about the class Matrix, it is just a way to encapsulate for now a vector<vector<int>>
.
Matrix* Matrix::triangulation(Matrix & ident)
{
unsigned int n = getNbLines();
unsigned int m = getNbColumns();
vector<vector<int>> mat = getMat();
vector<vector<int>> identity = ident.getMat();
vector<vector<int>> lower;
vector<vector<int>> upper;
/* ------------------------------------------------------------ */
/**
* @brief
* This code initialize a 'lower' matrix of size 'n x n'.
* The matrix is fill with only '0'.
*/
for(unsigned int i = 0; i < n; i++) {
vector<int> v(m);
lower.push_back(v);
for(unsigned int j = 0; j < m; j++) lower[i][j] = 0;
}
/**
* @brief
* This code initialize an 'upper' matrix of size 'n x m'.
* The matrix is fill with only '0'.
*/
for(unsigned int i = 0; i < n; i++) {
vector<int> v(m);
upper.push_back(v);
for(unsigned int j = 0; j < m; j++) upper[i][j] = 0;
}
/**
* @brief
* This code initialize an 'identity' matrix of size 'm x m'.
* The matrix is fill with only '0'.
*/
for(unsigned int i = 0; i < m; i++) {
vector<int> v2(m);
identity.push_back(v2);
for(unsigned int j = 0; j < m; j++) identity[i][j] = 0;
identity[i][i] = 1;
}
/* ------------------------------------------------------------ */
// Decomposing matrix into Upper and Lower triangular matrix
for (unsigned int i = 0; i < n; i++) {
// Upper Triangular
for (unsigned int k = 0; k < m; k++) {
// Summation of L(i, j) * U(j, k)
int sum = 0;
for (unsigned int j = 0; j < n; j++)
sum = sum + ((lower[i][j] * upper[j][k]));
// Evaluating U(i, k)
upper[i][k] = (mat[i][k] - sum) % prime;
identity[i][k] = (mat[i][k] - sum) % prime;
}
// Lower Triangular
for (unsigned int k = 0; k < n; k++) {
if (i == k) {
lower[i][i] = 1; // Diagonal as 1
}
else {
// Summation of L(k, j) * U(j, i)
int sum = 0;
for (unsigned int j = 0; j < n; j++)
sum = sum + ((lower[k][j] * upper[j][i]));
// Evaluating L(k, i)
lower[k][i] = (((mat[k][i] - sum)) / upper[i][i]) % prime;
identity[k][i] = (((mat[k][i] - sum)) / upper[i][i]) % prime;
}
}
}
ident.setMat(identity);
return new Matrix(lower,prime);
}
I call it with the object : Matrix mat({ { 2, 1, 3, 2, 0}, { 4, 3, 0, 1, 1 }},5);
So basically, I want the LU decomposition (especially the lower-triangle matrix) with all my computation done in modulus 5.
It works to extract the lower-matrix, however, the linear combinations (which are just all the operations done on an identity matrix) are not correct. Here is the trace that I have with an explanation of what I want to obtain:
c |-------------------------------------------------------------------------------------------------------|
c | Prime Number: 5
c |-------------------------------------------------------------------------------------------------------|
c | Input Matrix:
2 1 3 2 0
4 3 0 1 1
c |-------------------------------------------------------------------------------------------------------|
c | Lower Matrix:
1 0 0 0 0
2 1 0 0 0
c |-------------------------------------------------------------------------------------------------------|
c | Linear Combination Matrix:
2 0 3 2 0
0 1 0 3 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
c |-------------------------------------------------------------------------------------------------------|
c | Expected Solution:
3 2 3 0 3
0 1 1 3 4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
c |-------------------------------------------------------------------------------------------------------|
c | Explanations:
c | 3 * c1 + 0 * c2 + 0 * c3 + 0 * c4 + 0 * c5 = c1 of Lower-Matrix
c | 2 * c1 + 1 * c2 + 0 * c3 + 0 * c4 + 0 * c5 = c2 of Lower-Matrix
c | 3 * c1 + 1 * c2 + 1 * c3 + 0 * c4 + 0 * c5 = c3 of Lower-Matrix
c | 0 * c1 + 3 * c2 + 0 * c3 + 1 * c4 + 0 * c5 = c4 of Lower-Matrix
c | 3 * c1 + 4 * c2 + 0 * c3 + 0 * c4 + 1 * c5 = c5 of Lower-Matrix
c +=======================================================================================================+
So as a small sum-up:
- The lower-matrix is OK, the result is the expected one.
- The linear combinations outputted are not the one expected.
- An explanation of what is expected is given in the last subsection.
Question: Where is the bug in my way to apply the modification on the identity matrix, and why I do not get in output the correct linear combinations?
EDIT
Clear view of what should happened normally. But the algorithm I did (the LU decomposition) is not exactly the one I do by hand, even though it should lead to the same results. That is the real trouble here...