Here is an example of my code just to explain my question. (My code is not the XOR example and it has much more data):
public static double XOR_INPUT[][] = { { 0.0, 0.0 }, { 1.0, 0.0 }, { 0.0, 1.0 }, { 1.0, 1.0 } };
public static double XOR_IDEAL[][] = { { 0.0 }, { 1.0 }, { 1.0 }, { 0.0 } };
...
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
...
for(MLDataPair pair: trainingSet ) {
final MLData output = network.compute(pair.getInput());
System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1)
+ ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0));
}
In an evaluation situation (where I know the ideal output) this works fine.
But in a real situation, with my neural network trained and when I don't know the ideal output: What is the approach in this case? Do I have to "make up" the ideal data?
Can this computation be made through the workbench?