What is the fastest way to upload a big csv file i

2019-01-01 16:23发布

问题:

I\'m trying to upload a csv file, which is 250MB. Basically 4 million rows and 6 columns of time series data (1min). The usual procedure is:

location = r\'C:\\Users\\Name\\Folder_1\\Folder_2\\file.csv\'
df = pd.read_csv(location)

This procedure takes about 20 minutes !!!. Very preliminary I have explored the following options

  • Upload in chunks and then put the chunks together.
  • HDF5
  • \'feather\'
  • \'pickle\'

I wonder if anybody has compared these options (or more) and there\'s a clear winner. If nobody answers, In the future I will post my results. I just don\'t have time right now.

回答1:

Here are results of my read and write comparison for the DF (shape: 4000000 x 6, size in memory 183.1 MB, size of uncompressed CSV - 492 MB).

Comparison for the following storage formats: (CSV, CSV.gzip, Pickle, HDF5 [various compression]):

                  read_s  write_s  size_ratio_to_CSV
storage
CSV               17.900    69.00              1.000
CSV.gzip          18.900   186.00              0.047
Pickle             0.173     1.77              0.374
HDF_fixed          0.196     2.03              0.435
HDF_tab            0.230     2.60              0.437
HDF_tab_zlib_c5    0.845     5.44              0.035
HDF_tab_zlib_c9    0.860     5.95              0.035
HDF_tab_bzip2_c5   2.500    36.50              0.011
HDF_tab_bzip2_c9   2.500    36.50              0.011

reading

\"enter

writing/saving

\"enter

file size ratio in relation to uncompressed CSV file

\"enter

RAW DATA:

CSV:

In [68]: %timeit df.to_csv(fcsv)
1 loop, best of 3: 1min 9s per loop

In [74]: %timeit pd.read_csv(fcsv)
1 loop, best of 3: 17.9 s per loop

CSV.gzip:

In [70]: %timeit df.to_csv(fcsv_gz, compression=\'gzip\')
1 loop, best of 3: 3min 6s per loop

In [75]: %timeit pd.read_csv(fcsv_gz)
1 loop, best of 3: 18.9 s per loop

Pickle:

In [66]: %timeit df.to_pickle(fpckl)
1 loop, best of 3: 1.77 s per loop

In [72]: %timeit pd.read_pickle(fpckl)
10 loops, best of 3: 173 ms per loop

HDF (format=\'fixed\') [Default]:

In [67]: %timeit df.to_hdf(fh5, \'df\')
1 loop, best of 3: 2.03 s per loop

In [73]: %timeit pd.read_hdf(fh5, \'df\')
10 loops, best of 3: 196 ms per loop

HDF (format=\'table\'):

In [37]: %timeit df.to_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab.h5\', \'df\', format=\'t\')
1 loop, best of 3: 2.6 s per loop

In [38]: %timeit pd.read_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab.h5\', \'df\')
1 loop, best of 3: 230 ms per loop

HDF (format=\'table\', complib=\'zlib\', complevel=5):

In [40]: %timeit df.to_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_zlib5.h5\', \'df\', format=\'t\', complevel=5, complib=\'zlib\')
1 loop, best of 3: 5.44 s per loop

In [41]: %timeit pd.read_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_zlib5.h5\', \'df\')
1 loop, best of 3: 854 ms per loop

HDF (format=\'table\', complib=\'zlib\', complevel=9):

In [36]: %timeit df.to_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_zlib9.h5\', \'df\', format=\'t\', complevel=9, complib=\'zlib\')
1 loop, best of 3: 5.95 s per loop

In [39]: %timeit pd.read_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_zlib9.h5\', \'df\')
1 loop, best of 3: 860 ms per loop

HDF (format=\'table\', complib=\'bzip2\', complevel=5):

In [42]: %timeit df.to_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_bzip2_l5.h5\', \'df\', format=\'t\', complevel=5, complib=\'bzip2\')
1 loop, best of 3: 36.5 s per loop

In [43]: %timeit pd.read_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_bzip2_l5.h5\', \'df\')
1 loop, best of 3: 2.5 s per loop

HDF (format=\'table\', complib=\'bzip2\', complevel=9):

In [42]: %timeit df.to_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_bzip2_l9.h5\', \'df\', format=\'t\', complevel=9, complib=\'bzip2\')
1 loop, best of 3: 36.5 s per loop

In [43]: %timeit pd.read_hdf(\'D:\\\\temp\\\\.data\\\\37010212_tab_compress_bzip2_l9.h5\', \'df\')
1 loop, best of 3: 2.5 s per loop

PS i can\'t test feather on my Windows notebook

DF info:

In [49]: df.shape
Out[49]: (4000000, 6)

In [50]: df.info()
<class \'pandas.core.frame.DataFrame\'>
RangeIndex: 4000000 entries, 0 to 3999999
Data columns (total 6 columns):
a    datetime64[ns]
b    datetime64[ns]
c    datetime64[ns]
d    datetime64[ns]
e    datetime64[ns]
f    datetime64[ns]
dtypes: datetime64[ns](6)
memory usage: 183.1 MB

In [41]: df.head()
Out[41]:
                    a                   b                   c  \\
0 1970-01-01 00:00:00 1970-01-01 00:01:00 1970-01-01 00:02:00
1 1970-01-01 00:01:00 1970-01-01 00:02:00 1970-01-01 00:03:00
2 1970-01-01 00:02:00 1970-01-01 00:03:00 1970-01-01 00:04:00
3 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
4 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00

                    d                   e                   f
0 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
1 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00
2 1970-01-01 00:05:00 1970-01-01 00:06:00 1970-01-01 00:07:00
3 1970-01-01 00:06:00 1970-01-01 00:07:00 1970-01-01 00:08:00
4 1970-01-01 00:07:00 1970-01-01 00:08:00 1970-01-01 00:09:00

File sizes:

{ .data }  » ls -lh 37010212.*                                                                          /d/temp/.data
-rw-r--r-- 1 Max None 492M May  3 22:21 37010212.csv
-rw-r--r-- 1 Max None  23M May  3 22:19 37010212.csv.gz
-rw-r--r-- 1 Max None 214M May  3 22:02 37010212.h5
-rw-r--r-- 1 Max None 184M May  3 22:02 37010212.pickle
-rw-r--r-- 1 Max None 215M May  4 10:39 37010212_tab.h5
-rw-r--r-- 1 Max None 5.4M May  4 10:46 37010212_tab_compress_bzip2_l5.h5
-rw-r--r-- 1 Max None 5.4M May  4 10:51 37010212_tab_compress_bzip2_l9.h5
-rw-r--r-- 1 Max None  17M May  4 10:42 37010212_tab_compress_zlib5.h5
-rw-r--r-- 1 Max None  17M May  4 10:36 37010212_tab_compress_zlib9.h5

Conclusion:

Pickle and HDF5 are much faster, but HDF5 is more convenient - you can store multiple tables/frames inside, you can read your data conditionally (look at where parameter in read_hdf()), you can also store your data compressed (zlib - is faster, bzip2 - provides better compression ratio), etc.

PS if you can build/use feather-format - it should be even faster compared to HDF5 and Pickle

PPS: don\'t use Pickle for big data frames, as you may end up with SystemError: error return without exception set error message. It\'s also described here and here.