I have a model that outputs a Softmax, and I would like to develop a custom loss function. The desired behaviour would be:
1) Softmax to one-hot (normally I do numpy.argmax(softmax_vector) and set that index to 1 in a null vector, but this is not allowed in a loss function).
2) Multiply the resulting one-hot vector by my embedding matrix to get an embedding vector (in my context: the word-vector that is associated to a given word, where words have been tokenized and assigned to indices, or classes for the Softmax output).
3) Compare this vector with the target (this could be a normal Keras loss function).
I know how to write a custom loss function in general, but not to do this. I found this closely related question (unanswered), but my case is a bit different, since I would like to preserve my softmax output.
It is possible to mix tensorflow and keras in you customer loss function. Once you can access to all Tensorflow function, things become very easy. I just give you a example of how this function could be imlement.
import tensorflow as tf
def custom_loss(target, softmax):
max_indices = tf.argmax(softmax, -1)
# Get the embedding matrix. In Tensorflow, this can be directly done
# with tf.nn.embedding_lookup
embedding_vectors = tf.nn.embedding_lookup(you_embedding_matrix, max_indices)
# Do anything you want with normal keras loss function
loss = some_keras_loss_function(target, embedding_vectors)
loss = tf.reduce_mean(loss)
return loss
Fan Luo's answer points in the right direction, but ultimately will not work because it involves non-derivable operations. Note such operations are acceptable for the real value (a loss function takes a real value and a predicted value, non-derivable operations are only fine for the real value).
To be fair, that was what I was asking in the first place. It is not possible to do what I wanted, but we can get a similar and derivable behaviour:
1) Element-wise power of the softmax values. This makes smaller values much smaller. For example, with a power of 4 [0.5, 0.2, 0.7] becomes [0.0625, 0.0016, 0.2400]. Note that 0.2 is comparable to 0.7, but 0.0016 is negligible with respect to 0.24. The higher my_power is, the more similar to a one-hot the final result will be.
soft_extreme = Lambda(lambda x: x ** my_power)(softmax)
2) Importantly, both softmax and one-hot vectors are normalized, but not our "soft_extreme". First, find the sum of the array:
norm = tf.reduce_sum(soft_extreme, 1)
3) Normalize soft_extreme:
almost_one_hot = Lambda(lambda x: x / norm)(soft_extreme)
Note: Setting my_power too high in 1) will result in NaNs. If you need a better softmax to one-hot conversion, then you may do steps 1 to 3 two or more times in a row.
4) Finally we want the vector from the dictionary. Lookup is forbidden, but we can take the average vector using matrix multiplication. Because our soft_normalized is similar to one-hot encoding this average will be similar to the vector associated to the highest argument (original intended behaviour). The higher my_power is in (1), the truer this will be:
target_vectors = tf.tensordot(almost_one_hot, embedding_matrix, axes=[[1], [0]])
Note: This will not work directly using batches! In my case, I reshaped my "one hot" (from [batch, dictionary_length] to [batch, 1, dictionary_length] using tf.reshape. Then tiled my embedding_matrix batch times and finally used:
predicted_vectors = tf.matmul(reshaped_one_hot, tiled_embedding)
There may be more elegant solutions (or less memory-hungry, if tiling the embedding matrix is not an option), so feel free to explore more.