可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Is there C++ equivalent for python Xrange generator in either STL or boost?
xrange basically generates incremented number with each call to ++ operator.
the constructor is like this:
xrange(first, last, increment)
was hoping to do something like this using boost for each:
foreach(int i, xrange(N))
I. am aware of the for loop. in my opinion they are too much boilerplate.
Thanks
my reasons:
my main reason for wanting to do so is because i use speech to text software, and programming loop usual way is difficult, even if using code completion. It is much more efficient to have pronounceable constructs.
many loops start with zero and increment by one, which is default for range. I find python construct more intuitive
for(int i = 0; i < N; ++i)
foreach(int i, range(N))
functions which need to take range as argument:
Function(int start, int and, int inc);
function(xrange r);
I understand differences between languages, however if a particular construct in python is very useful for me and can be implemented efficiently in C++, I do not see a reason not to use it. For each construct is foreign to C++ as well however people use it.
I put my implementation at the bottom of the page as well the example usage.
in my domain i work with multidimensional arrays, often rank 4 tensor. so I would often end up with 4 nested loops with different ranges/increments to compute normalization, indexes, etc. those are not necessarily performance loops, and I am more concerned with correctness readability and ability to modify.
for example
int function(int ifirst, int ilast, int jfirst, int jlast, ...);
versus
int function(range irange, range jrange, ...);
In the above, if different strids are needed, you have to pass more variables, modify loops, etc. eventually you end up with a mass of integers/nearly identical loops.
foreach and range solve my problem exactly. familiarity to average C++ programmer is not high on my list of concerns - problem domain is a rather obscure, there is a lot of meta-programming, SSE intrinsic, generated code.
回答1:
Boost has counting_iterator as far as I know, which seems to allow only incrementing in steps of 1. For full xrange functionality you might need to implement a similar iterator yourself.
All in all it could look like this (edit: added an iterator for the third overload of xrange, to play around with boost's iterator facade):
#include <iostream>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/foreach.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <cassert>
template <class T>
boost::iterator_range<boost::counting_iterator<T> > xrange(T to)
{
//these assertions are somewhat problematic:
//might produce warnings, if T is unsigned
assert(T() <= to);
return boost::make_iterator_range(boost::counting_iterator<T>(0), boost::counting_iterator<T>(to));
}
template <class T>
boost::iterator_range<boost::counting_iterator<T> > xrange(T from, T to)
{
assert(from <= to);
return boost::make_iterator_range(boost::counting_iterator<T>(from), boost::counting_iterator<T>(to));
}
//iterator that can do increments in steps (positive and negative)
template <class T>
class xrange_iterator:
public boost::iterator_facade<xrange_iterator<T>, const T, std::forward_iterator_tag>
{
T value, incr;
public:
xrange_iterator(T value, T incr = T()): value(value), incr(incr) {}
private:
friend class boost::iterator_core_access;
void increment() { value += incr; }
bool equal(const xrange_iterator& other) const
{
//this is probably somewhat problematic, assuming that the "end iterator"
//is always the right-hand value?
return (incr >= 0 && value >= other.value) || (incr < 0 && value <= other.value);
}
const T& dereference() const { return value; }
};
template <class T>
boost::iterator_range<xrange_iterator<T> > xrange(T from, T to, T increment)
{
assert((increment >= T() && from <= to) || (increment < T() && from >= to));
return boost::make_iterator_range(xrange_iterator<T>(from, increment), xrange_iterator<T>(to));
}
int main()
{
BOOST_FOREACH(int i, xrange(10)) {
std::cout << i << ' ';
}
BOOST_FOREACH(int i, xrange(10, 20)) {
std::cout << i << ' ';
}
std::cout << '\n';
BOOST_FOREACH(int i, xrange(0, 46, 5)) {
std::cout << i << ' ';
}
BOOST_FOREACH(int i, xrange(10, 0, -1)) {
std::cout << i << ' ';
}
}
As others are saying, I don't see this buying you much over a normal for loop.
回答2:
Boost irange should really be the answer (ThxPaul Brannan)
I'm adding my answer to provide a compelling example of very valid use-cases that are not served well by manual looping:
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm.hpp>
#include <boost/range/irange.hpp>
using namespace boost::adaptors;
static int mod7(int v)
{ return v % 7; }
int main()
{
std::vector<int> v;
boost::copy(
boost::irange(1,100) | transformed(mod7),
std::back_inserter(v));
boost::sort(v);
boost::copy(
v | reversed | uniqued,
std::ostream_iterator<int>(std::cout, ", "));
}
Output: 6, 5, 4, 3, 2, 1, 0,
Note how this resembles generators/comprehensions (functional languages) and enumerables (C#)
Update I just thought I'd mention the following (highly inflexible) idiom that C++11 allows:
for (int x : {1,2,3,4,5,6,7})
std::cout << x << std::endl;
of course you could marry it with irange
:
for (int x : boost::irange(1,8))
std::cout << x << std::endl;
回答3:
std::iota
(not yet standardized) is kinda like range
. Doesn't make things any shorter or clearer than an explicit for
loop, though.
#include <algorithm>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
int main() {
std::vector<int> nums(5);
std::iota(nums.begin(), nums.end(), 1);
std::copy(nums.begin(), nums.end(),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}
Compile with g++ -std=c++0x
; this prints "1 2 3 4 5 \n"
.
回答4:
well, here is what i wrote, since there does not seem to be one.
the generator does not use any internal storage besides single integer.
range object can be passed around and used in nested loops.
there is a small test case.
#include "iostream"
#include "foreach.hpp"
#include "boost/iterator/iterator_categories.hpp"
struct range {
struct iterator_type {
typedef int value_type;
typedef int difference_type;
typedef boost::single_pass_traversal_tag iterator_category;
typedef const value_type* pointer;
typedef const value_type & reference;
mutable value_type value;
const difference_type increment;
iterator_type(value_type value, difference_type increment = 0)
: value(value), increment(increment) {}
bool operator==(const iterator_type &rhs) const {
return value >= rhs.value;
}
value_type operator++() const { return value += increment; }
operator pointer() const { return &value; }
};
typedef iterator_type iterator;
typedef const iterator_type const_iterator;
int first_, last_, increment_;
range(int last) : first_(0), last_(last), increment_(1) {}
range(int first, int last, int increment = 1)
: first_(first), last_(last), increment_(increment) {}
iterator begin() const {return iterator(first_, increment_);}
iterator end() const {return iterator(last_);}
};
int test(const range & range0, const range & range1){
foreach(int i, range0) {
foreach(int j, range1) {
std::cout << i << " " << j << "\n";
}
}
}
int main() {
test(range(6), range(3, 10, 3));
}
回答5:
my main reason for wanting to do so is because i use speech to text software, and programming loop usual way is difficult, even if using code completion. It is much more efficient to have pronounceable constructs.
That makes sense. But couldn't a simple macro solve this problem? #define for_i_to(N, body) for (int i = 0; i < N; ++i) { body }
or something similar. Or avoid the loop entirely and use the standard library algorithms. (std::for_each(range.begin(), rang.end(), myfunctor())
seems easier to pronounce)
many loops start with zero and increment by one, which is default for range. I find python construct more intuitive
You're wrong. The Python version is more intuitive to a Python programmer. And it may be more intuitive to a non-programmer. But you're writing C++ code. Your goal should be to make it intuitive to a C++ programmer. And C++ programmer know for
-loops and they know the standard library algorithms. Stick to using those. (Or stick to writing Python)
functions which need to take range as argument:
Function(int start, int and, int inc);
function(xrange r);
Or the idiomatic C++ version:
template <typename iter_type>
void function(iter_type first, iter_type last);
In C++, ranges are represented by iterator pairs. Not integers.
If you're going to write code in a new language, respect the conventions of that language. Even if it means you have to adapt and change some habits.
If you're not willing to do that, stick with the language you know.
Trying to turn language X into language Y is always the wrong thing to do. It own't work, and it'll confuse the language X programmers who are going to maintain (or just read) your code.
回答6:
Since I've started to use BOOST_FOREACH for all my iteration (probably a misguided idea, but that's another story), here's another use for aaa's range class:
std::vector<int> vec;
// ... fill the vector ...
BOOST_FOREACH(size_t idx, make_range(0, vec.size()))
{
// ... do some stuff ...
}
(yes, range should be templatized so I can use user-defined integral types with it)
And here's make_range():
template<typename T>
range<T> make_range(T const & start, T const & end)
{
return range<T>(start, end);
}
See also:
http://groups.google.com/group/boost-list/browse_thread/thread/3e11117be9639bd
and:
https://svn.boost.org/trac/boost/ticket/3469
which propose similar solutions.
And I've just found boost::integer_range; with the above example, the code would look like:
using namespace boost;
std::vector<int> vec;
// ... fill the vector ...
BOOST_FOREACH(size_t idx, make_integer_range(0, vec.size()))
{
// ... do some stuff ...
}
回答7:
The for loop handles that nearly automatically:
for(int loop=first;loop < last;loop += increment)
{
/// Do Stuff.
}
回答8:
You're trying to bring a python idiom into C++. That's unncessary. Use
for(int i=initVal;i<range;i+=increment)
{
/*loop body*/
}
to achieve this. In Python, the for(i in xrange(init, rng, increment))
form is necessary because Python doesn't provide a simple for loop, only a for-each type construct. So you can iterate only over a sequence or a generator. This is simply unnecessary and almost certainly bad practice in a language that provides a for(;;)
syntax.
EDIT: As a completely non-recommended aside, the closest I can get to the for i xrange(first, last, inc)
syntax in C++ is:
#include <cstdio>
using namespace std;
int xrange(unsigned int last, unsigned int first=0, unsigned int inc=1)
{
static int i = first;
return (i<last)?i+=inc:i=0;
}
int main()
{
while(int i=xrange(10, 0, 1))
printf("in loop at i=%d\n",i);
}
Not that while this loops the correct number of times, i varies from first+inc
to last
and NOT first
to last-inc
as in Python. Also, the function can only work reliably with unsigned
values, as when i==0
, the while
loop will exit. Do not use this function. I only added this code here to demonstrate that something of the sort is indeed possible. There are also several other caveats and gotchas (the code won't really work for first!=0 on subsequent function calls, for example)
回答9:
Since we don't really know what you actually want to use this for, I'm assuming your test case is representative. And then plain simple for loops are a whole lot simpler and more readable:
int main() {
for (int i = 0; i <= 6; ++i){
for (int j = 3; j <= 10; j += 3){
std::cout << i << " " << j << "\n";
}
}
}
A C++ programmer can walk in from the street and understand this function without having to look up complex classes elsewhere. And it's 5 lines instead of your 60. Of course if you have 400 loops exactly like these, then yes, you'd save some effort by using your range object. Or you could just wrap these two loops inside a helper function, and call that whenever you needed.
We don't really have enough information to say what's wrong with simple for loops, or what would be a suitable replacement. The loops here solve your problem with far less complexity and far fewer lines of code than your sample implementation. If this is a bad solution, tell us your requirements (as in what problem you need to solve, rather than "I want python-style loops in C++")
回答10:
Keep it simple, make a stupid macro;
#define for_range(VARNAME, START, STOP, INCREMENT) \
for(int VARNAME = START, int STOP_ = STOP, INCREMENT_ = INCREMENT; VARNAME != STOP_; VARNAME += INCREMENT_)
and use as;
for_range(i, 10, 5, -1)
cout << i << endl;