Thanks in advance for any help on this subject. I've recently been trying to work out Parseval's theorem for discrete fourier transforms when noise is included. I based my code from this code.
What I expected to see is that (as when no noise is included) the total power in the frequency domain is half that of the total power in the time-domain, as I have cut off the negative frequencies.
However, as more noise is added to the time-domain signal, the total power of the fourier transform of the signal+noise becomes much less than half of the total power of the signal+noise.
My code is as follows:
import numpy as np
import numpy.fft as nf
import matplotlib.pyplot as plt
def findingdifference(randomvalues):
n = int(1e7) #number of points
tmax = 40e-3 #measurement time
f1 = 30e6 #beat frequency
t = np.linspace(-tmax,tmax,num=n) #define time axis
dt = t[1]-t[0] #time spacing
gt = np.sin(2*np.pi*f1*t)+randomvalues #make a sin + noise
fftfreq = nf.fftfreq(n,dt) #defining frequency (x) axis
hkk = nf.fft(gt) # fourier transform of sinusoid + noise
hkn = nf.fft(randomvalues) #fourier transform of just noise
fftfreq = fftfreq[fftfreq>0] #only taking positive frequencies
hkk = hkk[fftfreq>0]
hkn = hkn[fftfreq>0]
timedomain_p = sum(abs(gt)**2.0)*dt #parseval's theorem for time
freqdomain_p = sum(abs(hkk)**2.0)*dt/n # parseval's therom for frequency
difference = (timedomain_p-freqdomain_p)/timedomain_p*100 #percentage diff
tdomain_pn = sum(abs(randomvalues)**2.0)*dt #parseval's for time
fdomain_pn = sum(abs(hkn)**2.0)*dt/n # parseval's for frequency
difference_n = (tdomain_pn-fdomain_pn)/tdomain_pn*100 #percent diff
return difference,difference_n
def definingvalues(max_amp,length):
noise_amplitude = np.linspace(0,max_amp,length) #defining noise amplitude
difference = np.zeros((2,len(noise_amplitude)))
randomvals = np.random.random(int(1e7)) #defining noise
for i in range(len(noise_amplitude)):
difference[:,i] = (findingdifference(noise_amplitude[i]*randomvals))
return noise_amplitude,difference
def figure(max_amp,length):
noise_amplitude,difference = definingvalues(max_amp,length)
plt.figure()
plt.plot(noise_amplitude,difference[0,:],color='red')
plt.plot(noise_amplitude,difference[1,:],color='blue')
plt.xlabel('Noise_Variable')
plt.ylabel(r'Difference in $\%$')
plt.show()
return
figure(max_amp=3,length=21)
My final graph looks like this figure. Am I doing something wrong when working this out? Is there an physical reason that this trend occurs with added noise? Is it to do with doing a fourier transform on a not perfectly sinusoidal signal? The reason I am doing this is to understand a very noisy sinusoidal signal that I have real data for.