I would like GCC to vectorize the below code.-fopt-info
tells me that GCC is not currently. I believe the problem is the strided access of W
or possible the backward incrementing of k
. Note that height
and width
are constants and index_type
is set to unsigned long
currently.
I removed some comments
114 for (index_type k=height-1;k+1>0;k--) {
116 for (index_type i=0;i<width;i++) {
117 Yp[k*width + i] = 0.0;
119 for (index_type j=0;j<width;j++) {
121 Yp[k*width + i] += W[k*width*width + j*width + i]*Yp[(k+1)*width + j];
122 }
123 Yp[k*width + i] *= DF(Ap[k*width + i]);
124 }
125 }
I am compiling with gcc -O3 -ffast-math -fopt-info -std=c11 ./neural.c -o neural -lm
Is there a good way to make this vectorize? Can you refer me to further information?
Is my method for indexing a bad idea (ie the k*width*width + ...
)? I need to dynamically allocate, and I thought that keeping things close in memory would better enable optimizations.
EDIT: This might be useful
The -fopt-info-missed
output for these lines
./neural.c:114:3: note: not vectorized: multiple nested loops.
./neural.c:114:3: note: bad loop form.
./neural.c:116:5: note: not vectorized: control flow in loop.
./neural.c:116:5: note: bad loop form.
./neural.c:119:7: note: step unknown.
./neural.c:119:7: note: reduction used in loop.
./neural.c:119:7: note: Unknown def-use cycle pattern.
./neural.c:119:7: note: not vectorized: complicated access pattern.
./neural.c:119:7: note: bad data access.
./neural.c:110:21: note: not vectorized: not enough data-refs in basic block.
./neural.c:110:58: note: not vectorized: not enough data-refs in basic block.
./neural.c:110:62: note: not vectorized: not enough data-refs in basic block.
./neural.c:117:18: note: not vectorized: not enough data-refs in basic block.
./neural.c:114:37: note: not vectorized: not enough data-refs in basic block.
EDIT:
Minimal example is HERE
I am trying it with BLAS. In the minimal example, it goes faster, but on the whole code it is slower ... not sure why
EDIT:
Compiler was optimizing out code. Fixed. BLAS is now faster. The fix was on the whole code, not the minimal example.
EDIT:
Same code as in the link from the previous edit
#include <math.h>
#include <cblas.h>
#include <stdlib.h>
#include <stdio.h>
typedef float value_type;
typedef unsigned long index_type;
static value_type F(value_type v) {
return 1.0/(1.0 + exp(-v));
}
static value_type DF(value_type v) {
const value_type Ev = exp(-v);
return Ev/((1.0 + Ev)*(1.0 + Ev));
}
#ifndef WITH_BLAS
static void get_Yp(const value_type * __restrict__ Ap, const value_type * __restrict__ W,
value_type * __restrict__ Yp, const value_type * __restrict__ Dp,
const index_type height, const index_type width) {
for (index_type i=0;i<width;i++) {
Yp[height*width + i] = 2*DF(Ap[height*width + i])*(Dp[i] - F(Ap[height*width + i]));
}
for (index_type k=height-1;k+1>0;k--) {
for (index_type i=0;i<width;i++) {
Yp[k*width + i] = 0.0;
for (index_type j=0;j<width;j++) {
Yp[k*width + i] += W[k*width*width + j*width + i]*Yp[(k+1)*width + j];
}
Yp[k*width + i] *= DF(Ap[k*width + i]);
}
}
}
#else
static void get_Yp(const value_type * __restrict__ Ap, const value_type * __restrict__ W,
value_type * __restrict__ Yp, const value_type * __restrict__ Dp,
const index_type height, const index_type width) {
for (index_type i=0;i<width;i++) {
Yp[height*width + i] = 2*DF(Ap[height*width + i])*(Dp[i] - F(Ap[height*width + i]));
}
for (index_type k=height-1;k+1>0;k--) {
cblas_sgemv(CblasRowMajor, CblasTrans, width, width, 1,
W+k*width*width, width, Yp+(k+1)*width, 1, 0, Yp+k*width, 1);
for (index_type i=0;i<width;i++)
Yp[k*width + i] *= DF(Ap[k*width + i]);
}
}
#endif
int main() {
const index_type height=10, width=10000;
value_type *Ap=malloc((height+1)*width*sizeof(value_type)),
*W=malloc(height*width*width*sizeof(value_type)),
*Yp=malloc((height+1)*width*sizeof(value_type)),
*Dp=malloc(width*sizeof(value_type));
get_Yp(Ap, W, Yp, Dp, height, width);
printf("Done %f\n", Yp[3]);
return 0;
}