Okay, I know that this code is crude, and all around a messy, but I am no programmer, so bear with me. I have this code that lists a bunch of numbers, but I want it to not list any circular copies of the numbers.
For example, if the number 111262 is on my list, I don't want 112621, 126211, 262111, 621112, or 211126 to be listed.
Sorry, that number cannot be on the list.
For a true example, if the number 111252 is on my list, I don't want 112521, 125211, 252111, 521112, or 211125 to be listed.
Any help is appreciated!
namespace Toric_Classes
{
class Program
{
static void Main(string[] args)
{
int number_of_perms=0;
bool badsubsum1;
bool badsubsum2;
int subsum1 = 0;
int subsum2 = 0;
int sum = 0;
int class_length=6;
int[] toric_class=new int[class_length];
// The nested for loops scroll through every possible number of length class_length, where each digit can have a value of 1,2,..., or class_length-1
// Each number is looked at as an array, and is not stored anywhere, only printed if it satisfies certain conditions
for(int i1=1; i1<class_length; i1++)
{
toric_class[0] = i1;
for (int i2 = 1; i2 < class_length; i2++)
{
toric_class[1] = i2;
for (int i3 = 1; i3 < class_length; i3++)
{
toric_class[2] = i3;
for (int i4 = 1; i4 < class_length; i4++)
{
toric_class[3] = i4;
for (int i5 = 1; i5 < class_length; i5++)
{
toric_class[4] = i5;
for (int i6 = 1; i6 < class_length; i6++)
{
badsubsum1 = false;
badsubsum2 = false;
toric_class[5] = i6;
// Find the value of the sum of the digits of our array.
// We only want numbers that have a total digit sum being a multiple of class_length
for (int k = 0; k < class_length; k++)
{
sum += toric_class[k];
}
// The follwong two nested loops find the value of every contiguous subsum of our number, but not the total subsum.
// We *do not* want any subsum to be a multiple of class_length.
// That is, if our number is, say, 121342, we want to find 1+2, 1+2+1, 1+2+1+3, 1+2+1+3+4, 2+1, 2+1+3, 2+1+3+4, 2+1+3+4+2, 1+3, 1+3+4, 1+3+4+2, 3+4, 3+4+2, and 4+2
// The following checks 1+2, 1+2+1, 1+2+1+3, 1+2+1+3+4, 2+1, 2+1+3, 2+1+3+4, 1+3, 1+3+4, and 3+4
for (int i = 0; i < class_length - 1; i++)
{
for (int j = i + 1; j < class_length - 1; j++)
{
for (int k = i; k < j; k++)
{
subsum1 += toric_class[k];
}
if (subsum1 % class_length == 0)
{
badsubsum1 = true;
break;
}
subsum1 = 0;
}
}
// The following checks 2+1, 2+1+3, 2+1+3+4, 2+1+3+4+2, 1+3, 1+3+4, 1+3+4+2, 3+4, 3+4+2, and 4+2
for (int i = 1; i < class_length; i++)
{
for (int j = i + 1; j < class_length; j++)
{
for (int k = i; k < j; k++)
{
subsum2 += toric_class[k];
}
if (subsum2 % class_length == 0)
{
badsubsum2 = true;
break;
}
subsum2 = 0;
}
}
// We only want numbers that satisfies the following conditions
if (sum % class_length == 0 && badsubsum1 == false && badsubsum2 == false)
{
foreach (var item in toric_class)
{
Console.Write(item.ToString());
}
Console.Write(Environment.NewLine);
number_of_perms++;
}
sum = 0;
subsum1 = 0;
subsum2 = 0;
}
}
}
}
}
}
Console.WriteLine("Number of Permuatations: "+number_of_perms);
Console.Read();
}
}
}
EDIT
To clarify, I am creating a list of all numbers with length n that satisfy certain conditions. Consider the number d1d2...dn, where each di is a digit of our number. Each di may have value 1,2,...,n. Our number is in the list if it satisfies the following
The sum of all the digits is a multiple of n, that is,
d1+d2+...+dn = 0 mod n
Every contiguous subsum of the digits is not a multiple of n, aside from the total sum, that is, if i !=1 and j != n, then
di+d(i+1)+...+dj != 0 mod n
I should mention again that a "number" does not strictly use the numbers 0-9 in its digits. It may take any value between 1 and n. In my code, I am using the case where n=6.
The code works by creating an array of length class_length
(in the code above, I use class_length=6
). We first have 6 nested for loops that simply assign values to the array toric_class
. The first for
assigns toric_class[0]
, the second for
assigns toric_class[1]
, and so on. In the first go around, we are generating the array 111111
, then 111112
, up to 111115
, then 111121
, etc. So essentially, we are looking at all heximal numbers that do not include 0. Once we reach our sixth value in our array, we check the array toric_class
and check its values to ensure that it satisfies the above conditions. If it does, we simply print the array in a line, and move on.