If I have:
System.setProperty("javax.net.ssl.keyStore", '/etc/certificates/fdms/WS1001237590._.1.ks');
System.setProperty("javax.net.ssl.keyStorePassword", 'DV8u4xRVDq');
System.setProperty("sun.security.ssl.allowUnsafeRenegotiation", "true");
I'm able to open a secure connection without a problem.
However, I'd like to have the certificates stored directly in the war, so I use: (The file input stream will eventually become a resource stream, but I'm doing this to get it to work.)
System.setProperty("sun.security.ssl.allowUnsafeRenegotiation", "true");
KeyStore ks = KeyStore.getInstance("JKS");
ks.load(new FileInputStream("/etc/certificates/fdms/WS1001237590._.1.ks"), "DV8u4xRVDq".toCharArray());
KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
kmf.init(ks, "DV8u4xRVDq".toCharArray());
SSLContext sc = SSLContext.getInstance("TLS");
sc.init(kmf.getKeyManagers(), null, null);
Now, if I open the same connection, I get: javax.net.ssl.SSLHandshakeException: Received fatal alert: handshake_failure
I had to do something similar a while back. I had a certificate file and I had to figure out a way to load it in and use it for an SSL connection. Hopefully what I did will help you out.
First I had to create a trust manager:
public class MyX509TrustManager implements X509TrustManager {
X509TrustManager pkixTrustManager;
MyX509TrustManager() throws Exception {
String certFile = "/certificates/MyCertFile.cer";
Certificate myCert = CertificateFactory.getInstance("X509").generateCertificate(this.getClass().getResourceAsStream(valicertFile));
KeyStore keyStore = KeyStore.getInstance("JKS");
keyStore.load(null, "".toCharArray());
keyStore.setCertificateEntry("myCert", myCert);
TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance("PKIX");
trustManagerFactory.init(keyStore);
TrustManager trustManagers[] = trustManagerFactory.getTrustManagers();
for(TrustManager trustManager : trustManagers) {
if(trustManager instanceof X509TrustManager) {
pkixTrustManager = (X509TrustManager) trustManager;
return;
}
}
throw new Exception("Couldn't initialize");
}
public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException {
pkixTrustManager.checkServerTrusted(chain, authType);
}
public void checkServerTrusted(X509Certificate[] chain, String authType) throws CertificateException {
pkixTrustManager.checkServerTrusted(chain, authType);
}
public X509Certificate[] getAcceptedIssuers() {
return pkixTrustManager.getAcceptedIssuers();
}
}
After that I had to create a socket factory that used my trust manager:
public class MySSLProtocolSocketFactory implements SecureProtocolSocketFactory {
private SSLContext sslContext = null;
public MySSLProtocolSocketFactory() {
super();
}
private static SSLContext createMySSLContext() {
try {
MyX509TrustManager myX509TrustManager = new MyX509TrustManager();
SSLContext context = SSLContext.getInstance("TLS");
context.init(null, new MyX509TrustManager[] { myX509TrustManager}, null);
return context;
}
catch(Exception e) {
Log.error(Log.Context.Net, e);
return null;
}
}
private SSLContext getSSLContext() {
if(this.sslContext == null) {
this.sslContext = createMySSLContext();
}
return this.sslContext;
}
public Socket createSocket(String host, int port, InetAddress clientHost, int clientPort) throws IOException {
return getSSLContext().getSocketFactory().createSocket(host, port, clientHost, clientPort);
}
public Socket createSocket(final String host, final int port, final InetAddress localAddress, final int localPort, final HttpConnectionParams params) throws IOException {
if(params == null) {
throw new IllegalArgumentException("Parameters may not be null");
}
int timeout = params.getConnectionTimeout();
SocketFactory socketFactory = getSSLContext().getSocketFactory();
if(timeout == 0) {
return socketFactory.createSocket(host, port, localAddress, localPort);
}
else {
Socket socket = socketFactory.createSocket();
SocketAddress localAddr = new InetSocketAddress(localAddress, localPort);
SocketAddress remoteAddr = new InetSocketAddress(host, port);
socket.bind(localAddr);
socket.connect(remoteAddr, timeout);
return socket;
}
}
public Socket createSocket(String host, int port) throws IOException {
return getSSLContext().getSocketFactory().createSocket(host, port);
}
public Socket createSocket(Socket socket, String host, int port, boolean autoClose) throws IOException {
return getSSLContext().getSocketFactory().createSocket(socket, host, port, autoClose);
}
public boolean equals(Object obj) {
return ((obj != null) && obj.getClass().equals(MySSLProtocolSocketFactory.class));
}
public int hashCode() {
return MySSLProtocolSocketFactory.class.hashCode();
}
}
Then I used that socket factory to send my POST:
Protocol.registerProtocol("myhttps", new Protocol("myhttps", new MySSLProtocolSocketFactory(), 443));
PostMethod postMethod = new PostMethod("myhttps://some.url.here");
HttpClient client = new HttpClient();
int status = client.executeMethod(postMethod);
The only thing I couldn't figure out was how to simply add the certificate file to the regular keystore. All the example source code I found during my research pointed to creating a socket factor and then registering a protocol with that socket factory. Perhaps there is a way to simply use the socket factory to make a connection without registering a protocol; I haven't investigated that thoroughly. In my particular situation, creating a specific protocol was necessary. Hopefully this will get your further along the way. I admit it seems a bit roundabout; I felt the same way when I did it initially. But this was the only way I got it to work. Maybe other people have a better solution.
For posterity's sake, all of this was far too complicated, and we pretty much just had a check in the static block:
if( environment == 'production') {
System.setProperty("javax.net.ssl.keyStore", '/etc/certificates/prod/keystore.ks');
System.setProperty("javax.net.ssl.keyStorePassword", 'password');
System.setProperty("sun.security.ssl.allowUnsafeRenegotiation", "true");
} else {
System.setProperty("javax.net.ssl.keyStore", '/etc/certificates/test/keystore.ks');
System.setProperty("javax.net.ssl.keyStorePassword", 'password');
System.setProperty("sun.security.ssl.allowUnsafeRenegotiation", "true");
}
With Axis, I think you need to configure its SSLSocketFactory
via:
AxisProperties.setProperty("axis.socketSecureFactory",
"com.example.MySSLSocketFactory");
where com.example.MySSLSocketFactory
is your class that implements org.apache.axis.components.net.SecureSocketFactory
(you could extend org.apache.axis.components.net.JSSESocketFactory
perhaps).
In the create
method, create a socket using the socket factory obtained from the SSLContext
you've configured.
If you want, here's an API to create SSLSocket and SSLServerSocket easily:
https://github.com/gpotter2/SSLKeystoreFactories
It does not require any other jars.... just get the files and use them like:
SSLSocket s = SSLSocketKeystoreFactory.getSocketWithCert(ip, port,
Main.class.getResourceAsStream("/mykey.jks"), "password")
Or:
SSLServerSocket s = SSLServerSocketKeystoreFactory.getSocketWithCert(port,
Main.class.getResourceAsStream("/mykey.jks"), "password")
That's much easier to use :)