I have following matrices :
X=1 2 3
Y=4 5 6
A=1 2 3
4 5 6
7 8 9
I Want to do
for each (i,j) in A
v = A(i,j)*X - Y
B(i,j) = v * v'
i.e. each element of A is multiplied by vector X, then resultant vector subtracts Y from itself and finally we take inner product of that vector to bring a single number.
Can it be done without for loop ?
One thing often forgotten in Matlab: The operator '
takes the conjugate transposed (.'
is the ordinary transposed). In other words, A' == conj(trans(A))
, whereas A.' == trans(A)
, which makes a difference if A
is a complex matrix.
Ok, let's apply some mathematics to your equations. We have
v = A(i,j)*X - Y
B(i,j) = v * v'
= (A(i,j)*X - Y) * (A(i,j)*X - Y)'
= A(i,j)*X * conj(A(i,j))*X' - Y * conj(A(i,j))*X'
- A(i,j)*X * Y' + Y * Y'
= A(i,j)*conj(A(i,j)) * X*X' - conj(A(i,j)) * Y*X' - A(i,j) * X*Y' + Y*Y'
So a first result would be
B = A.*conj(A) * (X*X') - conj(A) * (Y*X') - A * (X*Y') + Y*Y'
In the case of real matrices/vectors, one has the identities
X*Y' == Y*X'
A == conj(A)
which means, you can reduce the expression to
B = A.*A * (X*X') - 2*A * (X*Y') + Y*Y'
= A.^2 * (X*X') - 2*A * (X*Y') + Y*Y'
An alternative method:
X = [1 2 3]
Y = [4 5 6]
A = [1 2 3; 4 5 6; 7 8 9]
V = bsxfun(@minus, A(:)*X, [4 5 6])
b = sum((V.^2)')
B = reshape(b , 3, 3)
I get the result:
B = 27 5 11
45 107 197
315 461 635