I am trying to parse this Link for searching the results
Please select:
- School= All
- Sport=FootBall
- Conference=All
- Year=2005-2006
- State=All
This search result contains 226 entries and I would like to parse, all 226 entries and convert it into pandas dataframe such that dataframe contains"School","Conference","GSR",'FGR' and 'State'. So, far I was able to parse Table headers, but I cannot parse data from the table. Please advise with code and explanation.
Note:I am new to Python and Beautifulsoup.
Code I have tried so far:
url='https://web3.ncaa.org/aprsearch/gsrsearch'
#Create a handle, page, to handle the contents of the website
page = requests.get(url)
#Store the contents of the website under doc
doc = lh.fromstring(page.content)
#Parse data that are stored between <tr>..</tr> of HTML
tr_elements = doc.xpath('//tr')
#Create empty list
col=[]
i=0
#For each row, store each first element (header) and an empty list
for t in tr_elements[0]:
i+=1
name=t.text_content()
print ('%d:"%s"'%(i,name))
col.append((name,[]))
#Since out first row is the header, data is stored on the second row onwards
for j in range(1,len(tr_elements)):
#T is our j'th row
T=tr_elements[j]
#If row is not of size 10, the //tr data is not from our table
if len(T)!=10:
break
#i is the index of our column
i=0
#Iterate through each element of the row
for t in T.iterchildren():
data=t.text_content()
#Check if row is empty
if i>0:
#Convert any numerical value to integers
try:
data=int(data)
except:
pass
#Append the data to the empty list of the i'th column
col[i][1].append(data)
#Increment i for the next column
i+=1
Dict={title:column for (title,column) in col}
df=pd.DataFrame(Dict)
Output So far:
You can paste in the headers and payload then use .post
. I'm still learning how to use this properly, and not quite sure whats EXACTLY needed (or what's "sensitive info" which is why I blacked out some of it...like I said, I'm still learning), but managed to have it return the json.
This will return the json and then just convert to a dataframe.
You can get the headers and payload by doing an "Inspect" of the page, then click on XHR (you might need to refresh the page so gsrsearch
appears. Then just click on it and scroll to find it. You'l have to put the quotes in there though.
Code:
import json
import requests
from pandas.io.json import json_normalize
url='https://web3.ncaa.org/aprsearch/gsrsearch'
# Here's where you'll put your headers from Inspect
headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US,en;q=0.9',
'Connection': 'keep-alive',
...
...
...
'X-Requested-With': 'XMLHttpRequest'}
# Here's where you put Form Data from Inspect
payload = {'schoolOrgId': '',
'conferenceOrgId':'',
'sportCode': 'MFB',
'cohortYear': '2005', # I changed this to year 2005
'state':'',
... }
r = requests.post(url, headers=headers, data=payload)
jsonStr = r.text
jsonObj = json.loads(jsonStr)
df = json_normalize(jsonObj)
Output:
print (df)
cohortYear conferenceId ... sportDesc state
0 2005 875 ... Football OH
1 2005 916 ... Football AL
2 2005 916 ... Football AL
3 2005 911 ... Football AL
4 2005 24312 ... Football AL
5 2005 846 ... Football NY
6 2005 916 ... Football MS
7 2005 912 ... Football NC
8 2005 905 ... Football AZ
9 2005 905 ... Football AZ
10 2005 818 ... Football AR
11 2005 911 ... Football AR
12 2005 911 ... Football AL
13 2005 902 ... Football TN
14 2005 875 ... Football IN
15 2005 826 ... Football SC
16 2005 25354 ... Football TX
17 2005 876 ... Football FL
18 2005 5486 ... Football ID
19 2005 821 ... Football MA
20 2005 875 ... Football OH
21 2005 0 ... Football UT
22 2005 865 ... Football RI
23 2005 846 ... Football RI
24 2005 838 ... Football PA
25 2005 875 ... Football NY
26 2005 21451 ... Football IN
27 2005 0 ... Football CA
28 2005 923 ... Football CA
29 2005 825 ... Football CA
.. ... ... ... ... ...
210 2005 0 ... Football MD
211 2005 923 ... Football UT
212 2005 905 ... Football UT
213 2005 21451 ... Football IN
214 2005 911 ... Football TN
215 2005 837 ... Football PA
216 2005 826 ... Football VA
217 2005 821 ... Football VA
218 2005 821 ... Football VA
219 2005 846 ... Football NY
220 2005 821 ... Football NC
221 2005 905 ... Football WA
222 2005 905 ... Football WA
223 2005 825 ... Football UT
224 2005 823 ... Football WV
225 2005 912 ... Football NC
226 2005 853 ... Football IL
227 2005 818 ... Football KY
228 2005 875 ... Football MI
229 2005 837 ... Football VA
230 2005 827 ... Football WI
231 2005 5486 ... Football WY
232 2005 865 ... Football CT
233 2005 853 ... Football OH
234 2005 914 ... Football AR
235 2005 912 ... Football NC
236 2005 826 ... Football NC
237 2005 826 ... Football SC
238 2005 916 ... Football AR
239 2005 912 ... Football SC
[240 rows x 12 columns]