I'm trying to ISend()
two arrays: arr1,arr2
and an integer n
which is the size of arr1,arr2
. I understood from this post that sending a struct that contains all three is not an option since n
is only known at run time. Obviously, I need n
to be received first since otherwise the receiving process wouldn't know how many elements to receive. What's the most efficient way to achieve this without using the blokcing Send()
?
问题:
回答1:
Sending the size of the array is redundant (and inefficient) as MPI provides a way to probe for incoming messages without receiving them, which provides just enough information in order to properly allocate memory. Probing is performed with MPI_PROBE
, which looks a lot like MPI_RECV
, except that it takes no buffer related arguments. The probe operation returns a status object which can then be queried for the number of elements of a given MPI datatype that can be extracted from the content of the message with MPI_GET_COUNT
, therefore explicitly sending the number of elements becomes redundant.
Here is a simple example with two ranks:
if (rank == 0)
{
MPI_Request req;
// Send a message to rank 1
MPI_Isend(arr1, n, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD, &req);
// Do not forget to complete the request!
MPI_Wait(&req, MPI_STATUS_IGNORE);
}
else if (rank == 1)
{
MPI_Status status;
// Wait for a message from rank 0 with tag 0
MPI_Probe(0, 0, MPI_COMM_WORLD, &status);
// Find out the number of elements in the message -> size goes to "n"
MPI_Get_count(&status, MPI_DOUBLE, &n);
// Allocate memory
arr1 = malloc(n*sizeof(double));
// Receive the message. ignore the status
MPI_Recv(arr1, n, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
MPI_PROBE
also accepts the wildcard rank MPI_ANY_SOURCE
and the wildcard tag MPI_ANY_TAG
. One can then consult the corresponding entry in the status structure in order to find out the actual sender rank and the actual message tag.
Probing for the message size works as every message carries a header, called envelope. The envelope consists of the sender's rank, the receiver's rank, the message tag and the communicator. It also carries information about the total message size. Envelopes are sent as part of the initial handshake between the two communicating processes.
回答2:
Firstly you need to allocate memory (full memory = n = elements) to arr1 and arr2 with rank 0. i.e. your front end processor.
Divide the array into parts depending on the no. of processors. Determine the element count for each processor.
Send this element count to the other processors from rank 0.
The second send is for the array i.e. arr1 and arr2
In other processors allocate arr1 and arr2 according to the element count received from main processor i.e. rank = 0. After receiving element count, receive the two arrays in the allocated memories.
This is a sample C++ Implementation but C will follow the same logic. Also just interchange Send with Isend.
#include <mpi.h>
#include <iostream>
using namespace std;
int main(int argc, char*argv[])
{
MPI::Init (argc, argv);
int rank = MPI::COMM_WORLD.Get_rank();
int no_of_processors = MPI::COMM_WORLD.Get_size();
MPI::Status status;
double *arr1;
if (rank == 0)
{
// Setting some Random n
int n = 10;
arr1 = new double[n];
for(int i = 0; i < n; i++)
{
arr1[i] = i;
}
int part = n / no_of_processors;
int offset = n % no_of_processors;
// cout << part << "\t" << offset << endl;
for(int i = 1; i < no_of_processors; i++)
{
int start = i*part;
int end = start + part - 1;
if (i == (no_of_processors-1))
{
end += offset;
}
// cout << i << " Start: " << start << " END: " << end;
// Element_Count
int e_count = end - start + 1;
// cout << " e_count: " << e_count << endl;
// Sending
MPI::COMM_WORLD.Send(
&e_count,
1,
MPI::INT,
i,
0
);
// Sending Arr1
MPI::COMM_WORLD.Send(
(arr1+start),
e_count,
MPI::DOUBLE,
i,
1
);
}
}
else
{
// Element Count
int e_count;
// Receiving elements count
MPI::COMM_WORLD.Recv (
&e_count,
1,
MPI::INT,
0,
0,
status
);
arr1 = new double [e_count];
// Receiving FIrst Array
MPI::COMM_WORLD.Recv (
arr1,
e_count,
MPI::DOUBLE,
0,
1,
status
);
for(int i = 0; i < e_count; i++)
{
cout << arr1[i] << endl;
}
}
// if(rank == 0)
delete [] arr1;
MPI::Finalize();
return 0;
}
回答3:
@Histro The point I want to make is, that Irecv/Isend are some functions themselves manipulated by MPI lib. The question u asked depend completely on your rest of the code about what you do after the Send/Recv. There are 2 cases:
Master and Worker You send part of the problem (say arrays) to the workers (all other ranks except 0=Master). The worker does some work (on the arrays) then returns back the results to the master. The master then adds up the result, and convey new work to the workers. Now, here you would want the master to wait for all the workers to return their result (modified arrays). So you cannot use Isend and Irecv but a multiple send as used in my code and corresponding recv. If your code is in this direction you wanna use B_cast and MPI_Reduce.
Lazy Master The master divides the work but doesn't care of the result from his workers. Say you want to program a pattern of different kinds for same data. Like given characteristics of population of some city, you want to calculate the patterns like how many are above 18, how many have jobs, how much of them work in some company. Now these results don't have anything to do with one another. In this case you don't have to worry about whether the data is received by the workers or not. The master can continue to execute the rest of the code. This is where it is safe to use Isend/Irecv.