I have an aggregated DataFrame with a column created using collect_set
. I now need to aggregate over this DataFrame again, and apply collect_set
to the values of that column again. The problem is that I need to apply collect_Set
ver the values of the sets - and do far the only way I see how to do so is by exploding the aggregated DataFrame. Is there a better way?
Example:
Initial DataFrame:
country | continent | attributes
-------------------------------------
Canada | America | A
Belgium | Europe | Z
USA | America | A
Canada | America | B
France | Europe | Y
France | Europe | X
Aggregated DataFrame (the one I receive as input) - aggregation over country
:
country | continent | attributes
-------------------------------------
Canada | America | A, B
Belgium | Europe | Z
USA | America | A
France | Europe | Y, X
My desired output - aggregation over continent
:
continent | attributes
-------------------------------------
America | A, B
Europe | X, Y, Z
Since you can have only a handful of rows at this point, you just collect attributes as-is and flatten the result (Spark >= 2.4)
import org.apache.spark.sql.functions.{collect_set, flatten, array_distinct}
val byState = Seq(
("Canada", "America", Seq("A", "B")),
("Belgium", "Europe", Seq("Z")),
("USA", "America", Seq("A")),
("France", "Europe", Seq("Y", "X"))
).toDF("country", "continent", "attributes")
byState
.groupBy("continent")
.agg(array_distinct(flatten(collect_set($"attributes"))) as "attributes")
.show
+---------+----------+
|continent|attributes|
+---------+----------+
| Europe| [Y, X, Z]|
| America| [A, B]|
+---------+----------+
In general case things are much harder to handle, and in many cases, if you expect large lists, with many duplicates and many values per group, the optimal solution* is to just recompute results from scratch, i.e.
input.groupBy($"continent").agg(collect_set($"attributes") as "attributes")
One possible alternative is to use Aggregator
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.{Encoder, Encoders}
import scala.collection.mutable.{Set => MSet}
class MergeSets[T, U](f: T => Seq[U])(implicit enc: Encoder[Seq[U]]) extends
Aggregator[T, MSet[U], Seq[U]] with Serializable {
def zero = MSet.empty[U]
def reduce(acc: MSet[U], x: T) = {
for { v <- f(x) } acc.add(v)
acc
}
def merge(acc1: MSet[U], acc2: MSet[U]) = {
acc1 ++= acc2
}
def finish(acc: MSet[U]) = acc.toSeq
def bufferEncoder: Encoder[MSet[U]] = Encoders.kryo[MSet[U]]
def outputEncoder: Encoder[Seq[U]] = enc
}
and apply it as follows
case class CountryAggregate(
country: String, continent: String, attributes: Seq[String])
byState
.as[CountryAggregate]
.groupByKey(_.continent)
.agg(new MergeSets[CountryAggregate, String](_.attributes).toColumn)
.toDF("continent", "attributes")
.show
+---------+----------+
|continent|attributes|
+---------+----------+
| Europe| [X, Y, Z]|
| America| [B, A]|
+---------+----------+
but that's clearly not a Java-friendly option.
See also How to aggregate values into collection after groupBy? (similar, but without uniqueness constraint).
* That's because explode
can be quite expensive, especially in older Spark versions, same as access to external representation of SQL collections.