I am interfacing an external program with Mathematica. I am creating an input file for the external program. Its about converting geometry data from a Mathematica generated graphics into a predefined format. Here is an example Geometry.
Figure 1
The geometry can be described in many ways in Mathematica. One laborious way is the following.
dat={{1.,-1.,0.},{0.,-1.,0.5},{0.,-1.,-0.5},{1.,-0.3333,0.},{0.,-0.3333,0.5},
{0.,-0.3333,-0.5},{1.,0.3333,0.},{0.,0.3333,0.5},{0.,0.3333,-0.5},{1.,1.,0.},
{0.,1.,0.5},{0.,1.,-0.5},{10.,-1.,0.},{10.,-0.3333,0.},{10.,0.3333,0.},{10.,1.,0.}};
Show[ListPointPlot3D[dat,PlotStyle->{{Red,PointSize[Large]}}],Graphics3D[{Opacity[.8],
Cyan,GraphicsComplex[dat,Polygon[{{1,2,5,4},{1,3,6,4},{2,3,6,5},{4,5,8,7},{4,6,9,7},
{5,6,9,8},{7,8,11,10},{7,9,12,10},{8,9,12,11},{1,2,3},{10,12,11},{1,4,14,13},
{4,7,15,14},{7,10,16,15}}]]}],AspectRatio->GoldenRatio]
This generates the required 3D geometry in GraphicsComplex
format of MMA.
This geometry is described as the following input file for my external program.
# GEOMETRY
# x y z [m]
NODES 16
1. -1. 0.
0. -1. 0.5
0. -1. -0.5
1. -0.3333 0.
0. -0.3333 0.50. -0.3333 -0.5
1. 0.3333 0.
0. 0.3333 0.5
0. 0.3333 -0.5
1. 1. 0.
0. 1. 0.5
0. 1. -0.5
10. -1. 0.
10. -0.3333 0.
10. 0.3333 0.
10. 1. -0.
# type node_id1 node_id2 node_id3 node_id4 elem_id1 elem_id2 elem_id3 elem_id4
PANELS 14
1 1 4 5 2 4 2 10 0
1 2 5 6 3 1 5 3 10
1 3 6 4 1 2 6 10 0
1 4 7 8 5 7 5 1 0
1 5 8 9 6 4 8 6 2
1 6 9 7 4 5 9 3 0
1 7 10 11 8 8 4 11 0
1 8 11 12 9 7 9 5 11
1 9 12 10 7 8 6 11 0
2 1 2 3 1 2 3
2 10 12 11 9 8 7
10 4 1 13 14 1 3
10 7 4 14 15 4 6
10 10 7 15 16 7 9
# end of input file
Now the description I have from the documentation of this external program is pretty short. I am quoting it here.
- First keyword NODES states total number of nodes. After this line there should be no comment or empty lines. Next lines consist of three values x, y and z node coordinates and number of lines must be the same as number of nodes.
- Next keyword is PANEL and states how many panels we have. After that we have lines defining each panel. First integer defines panel type
- ID 1 – quadrilateral panel - is defined by four nodes and four neighboring panels. Neighboring panels are panels that share same sides (pair of nodes) and is needed for velocity and pressure calculation (methods 1 and 2). Missing neighbors (for example for panels near the trailing edge) are filled with value 0 (see Figure 1).
- ID 2 – triangular panel – is defined by three nodes and three neighboring panels.
- ID 10 – wake panel – is quadrilateral panel defined with four nodes and with two (neighboring) panels which are located on the trailing edge (panels to which wake panel is applying Kutta condition).
- Panel types 1 and 2 must be defined before type 10 in input file. Important to notice is the surface normal; order of nodes defining panels should be counter clockwise. By the right-hand rule if fingers are bended to follow numbering, thumb will show normal vector that should point “outwards” geometry.
Challenge!!
We are given with a 3D CAD model in a file called One.obj and it is exported fine in MMA.
cd = Import["One.obj"]
The output is a MMA Graphics3D
object
Now I can get easily access the geometry data as MMA internally reads them.
{ver1, pol1} = cd[[1]][[2]] /. GraphicsComplex -> List;
MyPol = pol1 // First // First;
Graphics3D[GraphicsComplex[ver1,MyPol],Axes-> True]
- How we can use the vertices and polygon information contained in
ver1
andpol1
and write them in a text file as described in the input file example above. In this case we will only have ID2 type (triangular) panels. - Using the Mathematica triangulation how to find the surface area of this 3D object. Is there any inbuilt function that can compute surface area in MMA?
- No need to create the wake panel or ID10 type elements right now. A input file with only triangular elements will be fine.
Sorry for such a long post but its a puzzle that I am trying to solve for a long time. Hope some of you expert may have the right insight to crack it.
BR