This is similar to Attach a calculated column to an existing dataframe, however, that solution doesn't work when grouping by more than one column in pandas v0.14.
For example:
$ df = pd.DataFrame([
[1, 1, 1],
[1, 2, 1],
[1, 2, 2],
[1, 3, 1],
[2, 1, 1]],
columns=['id', 'country', 'source'])
The following calculation works:
$ df.groupby(['id','country'])['source'].apply(lambda x: x.unique().tolist())
0 [1]
1 [1, 2]
2 [1, 2]
3 [1]
4 [1]
Name: source, dtype: object
But assigning the output to a new column result in an error:
df['source_list'] = df.groupby(['id','country'])['source'].apply(
lambda x: x.unique().tolist())
TypeError: incompatible index of inserted column with frame index
Merge grouped result with the initial DataFrame:
>>> df1 = df.groupby(['id','country'])['source'].apply(
lambda x: x.tolist()).reset_index()
>>> df1
id country source
0 1 1 [1.0]
1 1 2 [1.0, 2.0]
2 1 3 [1.0]
3 2 1 [1.0]
>>> df2 = df[['id', 'country']]
>>> df2
id country
1 1 1
2 1 2
3 1 2
4 1 3
5 2 1
>>> pd.merge(df1, df2, on=['id', 'country'])
id country source
0 1 1 [1.0]
1 1 2 [1.0, 2.0]
2 1 2 [1.0, 2.0]
3 1 3 [1.0]
4 2 1 [1.0]
This can be achieved without the merge by reassigning the result of the groupby.apply
to the original dataframe.
df = df.groupby(['id', 'country']).apply(lambda group: _add_sourcelist_col(group))
with your _add_sourcelist_col
function being,
def _add_sourcelist_col(group):
group['source_list'] = list(set(group.tolist()))
return group
Note that additional columns can also be added in your defined function. Just simply add them to each group dataframe, and be sure to return the group at the end of your function declaration.
Edit: I'll leave the info above as it might still be useful, but I misinterpreted part of the original quesiton. What the OP was trying to accomplish can be done using,
df = df.groupby(['id', 'country']).apply(lambda x: addsource(x))
def addsource(x):
x['source_list'] = list(set(x.source.tolist()))
return x
An alternative method that avoids the post-facto merge is providing the index in the function applied to each group, e.g.
def calculate_on_group(x):
fill_val = x.unique().tolist()
return pd.Series([fill_val] * x.size, index=x.index)
df['source_list'] = df.groupby(['id','country'])['source'].apply(calculate_on_group)