Piggy backing off my own previous question python pandas: assign control vs. treatment groupings randomly based on %
Thanks to @maxU, I know how to assign random control/treatment groupings to 2 groups; but what if I have 3 groups or more?
For example:
df.head()
customer_id | Group | many other columns
ABC 1
CDE 3
BHF 2
NID 1
WKL 3
SDI 2
JSK 1
OSM 3
MPA 2
MAD 1
pd.pivot_table(df,index=['Group'],values=["customer_id"],aggfunc=lambda x: len(x.unique()))
Group 1 : 270
Group 2 : 180
Group 3 : 330
I have a great answer, when I only have two groups:
df['Flag'] = df.groupby('Group')['customer_id']\
.transform(lambda x: np.random.choice(['Control','Test'], len(x),
p=[.5,.5] if x.name==1 else [.4,.6]))
But what if i want to split it this way:
- Group 1: 50% Control & 50% Test
- Group 2: 40% Control & 60% Test
- Group 3: 20% Control & 80% Test
@MaxU's answer is great, but unfortunately the split is not exact
d = {1:[.5,.5], 2:[.4,.6], 3:[.2,.8]}
df['Flag'] = df.groupby('Group')['customer_id'] \
.transform(lambda x: np.random.choice(['Control','Test'], len(x), p=d[x.name]))
When i test it, I don't get exact splits.
pd.pivot_table(df,index=['Group'],values=["customer_id"],columns=['Flag'], aggfunc=lambda x: len(x.unique()))
Control Treatment
Group 1: 138 132
Group 2: 78 102
Group 3: 79 251
Group 1 should be 135/135.
It sounds like you're looking for a way to split your customer_id
's into exact proportions, and not rely on chance. Here's one way to do that using pandas.qcut
and np.random.permutation
.
In [228]: df = pd.DataFrame({'customer_id': np.random.normal(size=10000),
'group': np.random.choice(['a', 'b', 'c'], size=10000)})
In [229]: proportions = {'a':[.5,.5], 'b':[.4,.6], 'c':[.2,.8]}
In [230]: df.head()
Out[230]:
customer_id group
0 0.6547 c
1 1.4190 a
2 0.4205 a
3 2.3266 a
4 -0.5691 b
In [231]: def assigner(gp):
...: group = gp['group'].iloc[0]
...: cut = pd.qcut(
np.arange(gp.shape[0]),
q=np.cumsum([0] + proportions[group]),
labels=range(len(proportions[group]))
).get_values()
...: return pd.Series(cut[np.random.permutation(gp.shape[0])], index=gp.index, name='assignment')
...:
In [232]: df['assignment'] = df.groupby('group', group_keys=False).apply(assigner)
In [233]: df.head()
Out[233]:
customer_id group assignment
0 0.6547 c 1
1 1.4190 a 1
2 0.4205 a 0
3 2.3266 a 1
4 -0.5691 b 0
In [234]: (df.groupby(['group', 'assignment'])
.size()
.unstack()
.assign(proportion=lambda x: x[0] / (x[0] + x[1])))
Out[234]:
assignment 0 1 proportion
group
a 1659 1658 0.5002
b 1335 2003 0.3999
c 669 2676 0.2000
What's going on here?
- Within each group we call the function
assigner
assigner
grabs the group name and proportions from the predefined dictionary and calls pd.qcut
to split into 0(control) 1(treatment)
np.random.permutation
then shuffles the the assignments
- Create this as a new column in the original dataframe
In [13]: df
Out[13]:
customer_id Group
0 ABC 1
1 CDE 3
2 BHF 2
3 NID 1
4 WKL 3
5 SDI 2
6 JSK 1
7 OSM 3
8 MPA 2
9 MAD 1
In [14]: d = {1:[.5,.5], 2:[.4,.6], 3:[.2,.8]}
In [15]: df['Flag'] = \
...: df.groupby('Group')['customer_id'] \
...: .transform(lambda x: np.random.choice(['Control','Test'], len(x), p=d[x.name]))
...:
In [16]: df
Out[16]:
customer_id Group Flag
0 ABC 1 Control
1 CDE 3 Test
2 BHF 2 Test
3 NID 1 Control
4 WKL 3 Control
5 SDI 2 Test
6 JSK 1 Test
7 OSM 3 Test
8 MPA 2 Control
9 MAD 1 Test