From the seaborn docs, the following snippet will produce the plot below:
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(style="white")
# Generate a random correlated bivariate dataset
rs = np.random.RandomState(5)
mean = [0, 0]
cov = [(1, .5), (.5, 1)]
x1, x2 = rs.multivariate_normal(mean, cov, 500).T
x1 = pd.Series(x1, name="$X_1$")
x2 = pd.Series(x2, name="$X_2$")
# Show the joint distribution using kernel density estimation
g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
Replacing g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
with
g = sns.jointplot(x1, x2, kind="reg", size=7, space=0)
will produce this:
But I would like to plot the density plot together with a regression line. Something like this:
Looking at the parameters using help(sns.jointplot
) it doesn't seem like there is an easy way to achieve this:
Parameters
----------
x, y : strings or vectors
Data or names of variables in ``data``.
data : DataFrame, optional
DataFrame when ``x`` and ``y`` are variable names.
kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }, optional
Kind of plot to draw.
stat_func : callable or None, optional
Function used to calculate a statistic about the relationship and
annotate the plot. Should map `x` and `y` either to a single value
or to a (value, p) tuple. Set to ``None`` if you don't want to
annotate the plot.
color : matplotlib color, optional
Color used for the plot elements.
size : numeric, optional
Size of the figure (it will be square).
ratio : numeric, optional
Ratio of joint axes size to marginal axes height.
space : numeric, optional
Space between the joint and marginal axes
dropna : bool, optional
If True, remove observations that are missing from ``x`` and ``y``.
{x, y}lim : two-tuples, optional
Axis limits to set before plotting.
{joint, marginal, annot}_kws : dicts, optional
Additional keyword arguments for the plot components.
kwargs : key, value pairings
Additional keyword arguments are passed to the function used to
draw the plot on the joint Axes, superseding items in the
``joint_kws`` dictionary.
Or is there?
Thank you for any suggestions!