I\'m looking for an algorithm to do additive color mixing for RGB values.
Is it as simple as adding the RGB values together to a max of 256?
(r1, g1, b1) + (r2, g2, b2) =
(min(r1+r2, 256), min(g1+g2, 256), min(b1+b2, 256))
I\'m looking for an algorithm to do additive color mixing for RGB values.
Is it as simple as adding the RGB values together to a max of 256?
(r1, g1, b1) + (r2, g2, b2) =
(min(r1+r2, 256), min(g1+g2, 256), min(b1+b2, 256))
It depends on what you want, and it can help to see what the results are of different methods.
If you want
Red + Black = Red Red + Green = Yellow Red + Green + Blue = White Red + White = White Black + White = White
then adding with a clamp works (e.g. min(r1 + r2, 255)
) This is more like the light model you\'ve referred to.
If you want
Red + Black = Dark Red Red + Green = Dark Yellow Red + Green + Blue = Dark Gray Red + White = Pink Black + White = Gray
then you\'ll need to average the values (e.g. (r1 + r2) / 2
) This works better for lightening/darkening colors and creating gradients.
To blend using alpha channels, you can use these formulas:
r = new Color();
r.A = 1 - (1 - fg.A) * (1 - bg.A);
if (r.A < 1.0e-6) return r; // Fully transparent -- R,G,B not important
r.R = fg.R * fg.A / r.A + bg.R * bg.A * (1 - fg.A) / r.A;
r.G = fg.G * fg.A / r.A + bg.G * bg.A * (1 - fg.A) / r.A;
r.B = fg.B * fg.A / r.A + bg.B * bg.A * (1 - fg.A) / r.A;
fg
is the paint color. bg
is the background. r
is the resulting color. 1.0e-6
is just a really small number, to compensate for rounding errors.
NOTE: All variables used here are in the range [0.0, 1.0]. You have to divide or multiply by 255 if you want to use values in the range [0, 255].
For example, 50% red on top of 50% green:
// background, 50% green
var bg = new Color { R = 0.00, G = 1.00, B = 0.00, A = 0.50 };
// paint, 50% red
var fg = new Color { R = 1.00, G = 0.00, B = 0.00, A = 0.50 };
// The result
var r = new Color();
r.A = 1 - (1 - fg.A) * (1 - bg.A); // 0.75
r.R = fg.R * fg.A / r.A + bg.R * bg.A * (1 - fg.A) / r.A; // 0.67
r.G = fg.G * fg.A / r.A + bg.G * bg.A * (1 - fg.A) / r.A; // 0.33
r.B = fg.B * fg.A / r.A + bg.B * bg.A * (1 - fg.A) / r.A; // 0.00
Resulting color is: (0.67, 0.33, 0.00, 0.75)
, or 75% brown (or dark orange).
You could also reverse these formulas:
var bg = new Color();
if (1 - fg.A <= 1.0e-6) return null; // No result -- \'fg\' is fully opaque
if (r.A - fg.A < -1.0e-6) return null; // No result -- \'fg\' can\'t make the result more transparent
if (r.A - fg.A < 1.0e-6) return bg; // Fully transparent -- R,G,B not important
bg.A = 1 - (1 - r.A) / (1 - fg.A);
bg.R = (r.R * r.A - fg.R * fg.A) / (bg.A * (1 - fg.A));
bg.G = (r.G * r.A - fg.G * fg.A) / (bg.A * (1 - fg.A));
bg.B = (r.B * r.A - fg.B * fg.A) / (bg.A * (1 - fg.A));
or
var fg = new Color();
if (1 - bg.A <= 1.0e-6) return null; // No result -- \'bg\' is fully opaque
if (r.A - bg.A < -1.0e-6) return null; // No result -- \'bg\' can\'t make the result more transparent
if (r.A - bg.A < 1.0e-6) return bg; // Fully transparent -- R,G,B not important
fg.A = 1 - (1 - r.A) / (1 - bg.A);
fg.R = (r.R * r.A - bg.R * bg.A * (1 - fg.A)) / fg.A;
fg.G = (r.G * r.A - bg.G * bg.A * (1 - fg.A)) / fg.A;
fg.B = (r.B * r.A - bg.B * bg.A * (1 - fg.A)) / fg.A;
The formulas will calculate that background or paint color would have to be to produce the given resulting color.
If your background is opaque, the result would also be opaque. The foreground color could then take a range of values with different alpha values. For each channel (red, green and blue), you have to check which range of alphas results in valid values (0 - 1).
Fun fact: Computer RGB values are derived from the square root of photon flux. So as a general function, your math should take that into account. The general function for this for a given channel is:
blendColorValue(a, b, t)
return sqrt((1 - t) * a^2 + t * b^2)
Where a and b are the colors to blend, and t is a number from 0-1 representing the point in the blend you want between a and b.
The alpha channel is different; it doesn\'t represent photon intensity, just the percent of background that should show through; so when blending alpha values, the linear average is enough:
blendAlphaValue(a, b, t)
return (1-t)*a + t*b;
So, to handle blending two colors, using those two functions, the following pseudocode should do you good:
blendColors(c1, c2, t)
ret
[r, g, b].each n ->
ret[n] = blendColorValue(c1[n], c2[n], t)
ret.alpha = blendAlphaValue(c1.alpha, c2.alpha, t)
return ret
Incidentally, I long for a programming language and keyboard that both permits representing math that (or more) cleanly (the combining overline unicode character doesn\'t work for superscripts, symbols, and a vast array of other characters) and interpreting it correctly. sqrt((1-t)*pow(a, 2) + t * pow(b, 2)) just doesn\'t read as clean.
Few points:
This will give:
(r1, g1, b1) + (r2, g2, b2) = (min(r1+r2, 255), min(g1+g2, 255), min(b1+b2, 255))
However, The \"natural\" way of mixing colors is to use the average, and then you don\'t need the min:
(r1, g1, b1) + (r2, g2, b2) = ((r1+r2)/2, (g1+g2)/2, (b1+b2)/2)
c1,c2 and result - JSON\'s like c1={r:0.5,g:1,b:0,a:0.33}
var rgbaSum = function(c1, c2){
var a = c1.a + c2.a*(1-c1.a);
return {
r: (c1.r * c1.a + c2.r * c2.a * (1 - c1.a)) / a,
g: (c1.g * c1.a + c2.g * c2.a * (1 - c1.a)) / a,
b: (c1.b * c1.a + c2.b * c2.a * (1 - c1.a)) / a,
a: a
}
}
PYTHON COLOUR MIXING THROUGH ADDITION IN CMYK SPACE
One possible way to do this is to first convert the colours to CMYK format, add them there and then reconvert to RGB.
Here is an example code in Python:
rgb_scale = 255
cmyk_scale = 100
def rgb_to_cmyk(self,r,g,b):
if (r == 0) and (g == 0) and (b == 0):
# black
return 0, 0, 0, cmyk_scale
# rgb [0,255] -> cmy [0,1]
c = 1 - r / float(rgb_scale)
m = 1 - g / float(rgb_scale)
y = 1 - b / float(rgb_scale)
# extract out k [0,1]
min_cmy = min(c, m, y)
c = (c - min_cmy)
m = (m - min_cmy)
y = (y - min_cmy)
k = min_cmy
# rescale to the range [0,cmyk_scale]
return c*cmyk_scale, m*cmyk_scale, y*cmyk_scale, k*cmyk_scale
def cmyk_to_rgb(self,c,m,y,k):
\"\"\"
\"\"\"
r = rgb_scale*(1.0-(c+k)/float(cmyk_scale))
g = rgb_scale*(1.0-(m+k)/float(cmyk_scale))
b = rgb_scale*(1.0-(y+k)/float(cmyk_scale))
return r,g,b
def ink_add_for_rgb(self,list_of_colours):
\"\"\"input: list of rgb, opacity (r,g,b,o) colours to be added, o acts as weights.
output (r,g,b)
\"\"\"
C = 0
M = 0
Y = 0
K = 0
for (r,g,b,o) in list_of_colours:
c,m,y,k = rgb_to_cmyk(r, g, b)
C+= o*c
M+=o*m
Y+=o*y
K+=o*k
return cmyk_to_rgb(C, M, Y, K)
The result to your question would then be (assuming a half-half mixture of your two colours:
r_mix, g_mix, b_mix = ink_add_for_rgb([(r1,g1,b1,0.5),(r2,g2,b2,0.5)])
where the 0.5\'s are there to say that we mix 50% of the first colour with 50% of the second colour.
Yes, it is as simple as that. Another option is to find the average (for creating gradients).
It really just depends on the effect you want to achieve.
However, when Alpha gets added, it gets complicated. There are a number of different methods to blend using an alpha.
An example of simple alpha blending: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
Have written/used something like @Markus Jarderot\'s sRGB
blending answer (which is not gamma corrected since that is the default legacy) using C++
//same as Markus Jarderot\'s answer
float red, green, blue;
alpha = (1.0 - (1.0 - back.alpha)*(1.0 - front.alpha));
red = (front.red * front.alpha / alpha + back.red * back.alpha * (1.0 - front.alpha));
green = (front.green * front.alpha / alpha + back.green * back.alpha * (1.0 - front.alpha));
blue = (front.blue * front.alpha / alpha + back.blue * back.alpha * (1.0 - front.alpha));
//faster but equal output
alpha = (1.0 - (1.0 - back.alpha)*(1.0 - front.alpha));
red = (back.red * (1.0 - front.alpha) + front.red * front.alpha);
green = (back.green * (1.0 - front.alpha) + front.green * front.alpha);
blue = (back.blue * (1.0 - front.alpha) + front.blue * front.alpha);
//even faster but only works when all values are in range 0 to 255
int red, green, blue;
alpha = (255 - (255 - back.alpha)*(255 - front.alpha));
red = (back.red * (255 - front.alpha) + front.red * front.alpha) / 255;
green = (back.green * (255 - front.alpha) + front.green * front.alpha) / 255;
blue = (back.blue * (255 - front.alpha) + front.blue * front.alpha) / 255;
more info: what-every-coder-should-know-about-gamma
Here\'s a highly optimized, standalone c++ class, public domain, with floating point and two differently optimized 8-bit blending mechanisms in both function and macro formats, as well as a technical discussion of both the problem at hand and how to, and the importance of, optimization of this issue:
https://github.com/fyngyrz/colorblending
When I came here I didn\'t find the \"additive color mixing\" algorithm I was actually looking for, which is also available in Photoshop and is described as \"Screen\" on Wikipedia. (Aka \"brighten\" or \"invert multiply\".) It produces a result similar to two light sources being combined.
With Screen blend mode the values of the pixels in the two layers are inverted, multiplied, and then inverted again. This yields the opposite effect to multiply. The result is a brighter picture.
Here it is:
// (rgb values are 0-255)
function screen(color1, color2) {
var r = Math.round((1 - (1 - color1.R / 255) * (1 - color2.R / 255)) * 255);
var g = Math.round((1 - (1 - color1.G / 255) * (1 - color2.G / 255)) * 255);
var b = Math.round((1 - (1 - color1.B / 255) * (1 - color2.B / 255)) * 255);
return new Color(r, g, b);
}